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Context

� The methods presented here are developped in the SHY code
platform (Peybernes, Poncet, Motte, Rivoire), dedicated to
research in HPC and numerics.

� The goal is to propose a multimaterial Eulerian scheme
for the next generation of HPC hydrocodes:

1 Meshes will be refined: the scheme should be robust, second
order in time and space and entropic at first order. If the
scheme is conservative, it converges to the right solution.
→ Collocated Lagrange+Remap scheme

2 Code scalability: the number of MPI parallel synchronisations
should be limited and remap should be generic to allow
OpenMP parallel loops and vectorization.
→ Direct multidirectional remap scheme

� This study is restricted to 2D Cartesian orthogonal meshes
and multimaterial flows with two materials (sharp interface).
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Collocated Lagrange-Remap scheme

Collocated Lagrangian schemes EUCCLHYD (P.-H. Maire et al,
2007) or GLACE (Després et al, 2005) solve this conservative
system:

d

dt

∫
Ω(t)

1dV =

∫
Ω(t)

(~∇.~u)(x .t)dV

d~x(t)

dt
= ~u(x , t)

d

dt

∫
Ω(t)

ρ(x , t)dV = 0

d

dt

∫
Ω(t)

ρ(x , t)~u(x , t)dV = −
∫

Ω(t)

~∇P(x , t)dV

d

dt

∫
Ω(t)

ρ(x , t)E (x , t)dV = −
∫

Ω(t)

~∇.(P(x , t)~u)(x , t)dV

P(x , t) = P(ρ(x , t), e(x , t))

with ρ the density, P the pressure, E the specific total energy and
~u the velocity on volume Ω(t).
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Collocated Lagrange scheme

Multimaterial collocated Lagrange scheme steps:
S. Galera, P.-H. Maire, J. Breil. A two-dimensional unstructured cell-centered multimaterial ALE scheme using

VOF interface reconstruction, J. Comput. Phys., 229 (2010), 5755-5787.

1) Acoustic Godunov Riemann problems at nodes to obtain
node velocities and pressures at half edges with constraints:

-volume and total energy conservation,
-entropy dissipation (first order).

2) Fluxes are computed with node velocities and half edges
pressures, and variables (~x ,V , ~u,E ) are updated.
3) In mixed cell i with materials α:

-velocity is the same for all materials,
-materials densities evolve considering iso-deformation,
-mixture pressure is materials pressures volume averaged,
-specific entropy dissipation rate is the same for all materials:

mαdteα + fαpαdtVoli = mα(Tdts)i
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Collocated Lagrange scheme second order

� Second order in time with predictor-corrector integration.
� Second order in space for node velocities and pressures at

half edges, by MUSCL reconstruction at nodes of cell
centered variable P = (u, v , p) . For instance for SW :

Porder2
SW = PSW +

ϕ(θxSW )

2
(PSW − PSWW ) +

ϕ(θySW )

2
(PSW − PSSW )
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Lagrange Wilkins + Remap:
Alternate Directions vs Direct Remap

Work with Bastien Chaudet, Master degree training 2014

� Build a Direct remap using the same tools as the ADI remap
� Naive Direct FV remap not very accurate for multimaterial

flows → Direct remap with corner fluxes
� “Alternate directions” does a good job in many situations.
� Direct remap with corner fluxes is a more complex algorithm,

but it could worth when dealing with many cores
(scalability).

Direct Alternate Directions Direct Corner Fluxes
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Direct Remap with Corner Fluxes

� Lagrangian displacement along all directions,

� Face fluxes, Corner fluxes.
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Direct Remap with Corner Fluxes

� Computation of multimaterial faces dVolαf and corners
dVolαc volume fluxes,

� Interface positioning with volume fractions (Youngs) and
rectangular approximation of the lagrangian cell.

n lag

Figure : Intersection between the interface and faces and corners
volume fluxes.
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Results Wilkins+Remap AD vs Direct with
Corner Fluxes

� Interaction between a shock in air and a
bubble of Helium. Mesh 1000×90, domain [0, 1000]×[0, 9]cm.

Initial state Left air state (shock) Right air state Bubble

Density ρ (kg.m3) 1.376363 1 0.18187

Velocity u.ex (m.s−1) 124.824 0 0

Pressure p (Pa) 1.5698 105 105 105

Gamma γ 1.4 1.4 1.66

Figure : Zoom, density at final state, t = 1 ms. ADI left, DirectCF
right.
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Results Wilkins+Remap AD vs Direct with
Corner Fluxes

� Impact droplet on thin film: Impact of a water drop into air
on a water wall. Mesh 320×160, domain [0, 10]×[0, 5] cm.

Multimaterial, air Perfect Gas, and water Stiffened Gas.

Initial state Air Wall Drop

Density ρ (kg.m3) 1.29 1000 1000

Velocity u.ex (m.s−1) −1000 0 −1000

Pressure p (Pa) 105 105 105

Gamma γ 1.4 7 7

Pi π (Pa) 0 2.1 109 2.1 109
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Results Wilkins+Remap AD vs Direct with
Corner Fluxes

� Impact droplet on thin film: Impact of a water drop into air
on a water wall. Mesh 320×160, domain [0, 10]×[0, 5] cm.

Figure : Volume fraction at initial state, t = 0s and t = 6s. ADI left,
DirectCF right.
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Parallelization

Figure : Sketch of the hybrid parallelization MPI-OpenMP.
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Diminishing entropy dissipation

→ Good scheme properties (numerics, HPC),

but entropy dissipation: can we diminish it ?
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Diminishing entropy dissipation

FRAMEWORK: the time derivative is considered at the
discrete level, whatever the time integration scheme:

dtA =
An+1 − An

∆t

For a cell i , EUCCLHYD scheme writes:

midt(1/ρi ) = [∇ · u]i =

∫
Ωi

∇ · u =
∑
f

Af (uf · nf )

midt(ui ) = − [∇p]i =

∫
Ωi

−∇p = −
∑
f

Af pf nf

midt(Ei ) = − [∇ · (p u)]i =

∫
Ωi

−∇ · (p u) = −
∑
f

Af pf (uf · nf )

(1)
Flux terms [∇ · u]i , [∇p]i , [∇ · (p u)]i computation is detailed in
EUCCLHYD literature.
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Scheme diffusion of velocity

In 1D, Voli = 1 ·∆xi and EUCCLHYD is the Godunov acoustic
scheme:

pi+1/2 = pi+1/2 −
αi+1/2

2
(ui+1 − ui ) (2)

ρidt(ui ) = −
pi+1/2 − pi−1/2

∆xi
+
αi+1/2(ui+1 − ui )− αi−1/2(ui − ui−1)

2∆xi
#− ∂x(p + q)

(3)

with an equivalent linear artificial viscosity q =
1

2
ρc∆u.
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Scheme diffusion of pressure

In 1D, Voli = 1 ·∆xi and EUCCLHYD is the Godunov acoustic
scheme:

ui+1/2 = ui+1/2 −
pi+1 − pi

2αi+1/2
(4)

Considering an isentropic flow,
dp

dρ
= c2:

dtpi = −(ρc2)i
ui+1/2 − ui−1/2

∆xi
+

(ρc2)i
∆xi

(
pi+1 − pi

2αi+1/2
− pi − pi−1

2αi−1/2

)
(5)

No equivalent term within the “artificial viscosity” framework.
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Diminishing entropy dissipation

We choose an explicit discretization to describe entropy evolution:

miT
n
i dt(si ) = midt(ei ) + mip

n
i dt(1/ρi ) (6)

Let us compute it in function of fluxes using equations (1):

midt(Ei ) = −[∇ · (p u)]i
= midt(ei ) + midt(u2

i /2)
= miT

n
i dt(si )− pn

i [∇ · u]i − un
i · [∇p]i

(7)

Finally: miT
n
i dt(si ) = −[∇ · (p u)]i + pn

i [∇ · u]i + un
i · [∇p]i

For the EUCCLHYD scheme in 1D, it comes:

miT
n
i dt(si ) =

1

2
ρici∆u2

i = q[∂xu]i

with the equivalent linear artificial viscosity q =
1

2
ρc∆u.
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Diminishing entropy dissipation

Flows with u 6= cst are computed with an entropy dissipation
corresponding to a linear artificial viscosity with coefficient 1/2:

midt(ei ) + mip
n
i dt(1/ρi ) = miT

n
i dt(si ) #

1

2
ρici (∆ui )

2 > 0

(8)
Key ideas:

� We want to reduce EUCCLHYD’s entropy dissipation
on isentropic flows.

� Robustness: same velocity and pressure numerical
diffusion coming from acoustic Godunov solver (no use of
Dukowicz solver, A. Burbeau, R. Loubere-P.-H. Maire).

� We allow a trade off with total energy conservation:
quasi-conservation to keep proper shock waves
propagation.
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Diminishing entropy dissipation

Thus we introduce a parameter 0 ≤ θi ≤ 1 such that:

dt(ei ) + pn
i dt(1/ρi ) = θiT

n
i dtsi

→ midt(Ei ) = −θi [∇· (p u)]i + (1− θi ) (−un
i · [∇p]i − pn

i [∇ · u]i )

Rough idea:
When dealing with shock waves:
θi = 1, EUCCLHYD, entropic and total energy conservation

When computing an isentropic flow:
θi = 0, isentropic but non conservative in total energy

The idea comes from classical schemes with artificial viscosity, and is

mentionned in C. Mazeran’s PhD thesis 2007 (with B. Després) and D.

Chauveheid PhD thesis 2012 (with J.M. Ghidaglia).
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Diminishing entropy dissipation

Ri =
T n
i dt(si )

|pn
i dt(1/ρi )|

=
−[∇ · (p u)]i + un

i · [∇p]i + pn
i [∇ · u]i

|pn
i [∇ · u]i |

The analysis of Ri (acoustic Riemann problems, strong shock or
rarefaction waves) leads to a proposition for 0 ≤ θi ≤ 1:

T n
i dt(si ) > 0:

→ [∇ · u]i < 0 (shock wave)
θi = min(1, Cq Ri )

→ [∇ · u]i > 0 (quasi-conservation of Etot and possibly isentropic)

θi = min

(
1,
|pn

i+1 − 2 pn
i + pn

i−1|
min(pn

i−1, p
n
i , p

n
i+1)

)
T n
i dt(si ) ≤ 0:

θi = 1 (EUCCLHYD scheme).
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Diminishing entropy dissipation

1D shock wave: T n
i dt(si ) ≥ 0, [∇ · u]i < 0 and θi = CqRi < 1:

mi (dt(ei ) + pn
i dt(1/ρi )) =

Cq

(
1

2
ρici (∆ui )

2

)2

pn
i ∆ui

#qi [∂xu]i
(9)

It comes a quadratic artificial viscosity:

qi = Cq

(
ρi (ci )

2

4 pi

)
ρi (∆ui )

2 (10)

We set Cq = 4 because for perfect gases ρi (ci )
2/pi = γi > 1

should be a proper value as a quadratic artificial viscosity
coefficient.
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Diminishing entropy dissipation
WILKINS/EUCCLHYD + Remap

Figure : Double rarefaction wave 1D 200 cells, internal energy
(above), entropy (below): EUCCLHYD (black dash), EUCCLHYD
quasi-conservation (blue), WILKINS Qquad=2 Qlin=0.1 (red).
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Diminishing entropy dissipation
EUCCLHYD+Remap

Figure : Double rarefaction wave 1D 200 cells, internal energy:
EUCCLHYD (black), EUCCLHYD isentropic in rarefaction waves (red)
or EUCCLHYD quasi-conservation (blue) with theta (blue dash).
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Diminishing entropy dissipation
CONVERGENCE EUCCLHYD + Remap

Figure : HELL (LeBlanc Shock tube) 1D 900, 1800 and 3600 cells,
density: EUCCLHYD (black), EUCCLHYD quasi-conservation (blue).
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Diminishing entropy dissipation
WILKINS/EUCCLHYD + Remap

Figure : HELL (LeBlanc Shock tube) 1D 900 cells, density (left),
entropy (right): EUCCLHYD quasi-conservation (blue) and WILKINS
(red).
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Diminishing entropy dissipation
WILKINS/EUCCLHYD + Remap

Figure : HELL (LeBlanc Shock tube) 1D 900 cells, density (blue) and
theta (blue dash) for EUCCLHYD quasi-conservation.
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Diminishing entropy dissipation
WILKINS/EUCCLHYD + Remap

Figure : SEDOV 2D 110x110 cells, density.
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Diminishing entropy dissipation
WILKINS/EUCCLHYD + Remap

Figure : SEDOV 2D 110x110 cells, density: EUCCLHYD (black dash),
EUCCLHYD quasi-conservation (blue) or WILKINS (red).
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Diminishing entropy dissipation
WILKINS/EUCCLHYD + Remap

Figure : SEDOV 2D 110x110 cells, density (blue) with theta (blue
dash) for EUCCLHYD quasi-conservation.
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Diminishing entropy dissipation
WILKINS/EUCCLHYD + Remap

Figure : Triple point 2D 280x120 cells, internal energy: EUCCLHYD
(top), EUCCLHYD quasi-conservation (bottom).
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Diminishing entropy dissipation
WILKINS/EUCCLHYD + Remap

Figure : Multimaterial Triple point 2D 280x120 cells, density:
EUCCLHYD quasi-conservation (top) and WILKINS (bottom).
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Collocated Remap scheme and total energy

→ Conservative remap of total energy, effect on internal energy.
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Collocated Remap scheme

Remap phase is achieved by using a flux scheme, thus is fully
conservative:

Voli = Vol lagi +
∑
f

dVolf

mi = mlag
i +

∑
f

dmf

ui =

(
ulag
i mlag

i +
∑
f

dquf

)
/mi

vi =

(
v lag
i mlag

i +
∑
f

dqvf

)
/mi

Ei =

(
E lag
i mlag

i +
∑
f

dmEf

)
/mi

ei = Ei − (ui )
2/2 + (vi )

2/2

J.-P. Braeunig, MULTIMAT, Würzburg | September 2015 | PAGE 32/37



Collocated Remap scheme

Remap phase is achieved by using a flux scheme, thus is fully
conservative:

dmf = ρo2
f dVolf

dquf = ρo2
f uo2

f dVolf
dqvf = ρo2

f vo2
f dVolf

dmEf = ρo2
f (eo2

f + ko2
f ) dVolf

ko2
f =

(uo2
f )2

2
−

(uo2
f − ulag

f upw )2

2
+

(vo2
f )2

2
−

(vo2
f − v lag

f upw )2

2

with at face f :
ρo2
f the limited linear reconstruction of ρ,

ulag
f upw the upwind value on the Lagrange mesh.
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Collocated Remap scheme

Let us consider a face f between lagrangian cells i and i + 1:

miEi −mlag
i E lag

i + dmf E o2
f = 0

→ miei −mlag
i e lagi + dmf eo2

f = εxi + εyi

with
εxi = mlag

i kx lag
i −mik

x
i − dmf kx o2

f

εyi = mlag
i ky lag

i −mik
y
i − dmf ky o2

f

with k lag
i = (ulag

i )2/2 and ki = (ui )
2/2.

Since we would like an “adiabatic” remap, we should find kx o2
f

such that εxi ≈ 0 and εxi+1 ≈ 0.
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Collocated Remap scheme

Which value for the kinetic energy flux “dmf kx o2
f ” to obtain

εxi ≈ 0 and εxi+1 ≈ 0 ?

If kx o2
f = (uo2

f )2/2:

→


εxi = −

(
dmf mlag

i

mi

)
(uo2

f − ulag
i )2

2
< 0

εxi+1 =

(
dmf mlag

i+1

mi+1

)
(uo2

f − ulag
i+1)2

2
> 0

If kx o2
f = (uo2

f )2/2− (uo2
f − ulag

i )2/2:

→


εxi = −

(
(dmf )2

mi

)
(uo2

f − ulag
i )2

2
< 0

εxi+1 =

(
dmf

mi+1

)(
mlag

i+1

(uo2
f − ulag

i+1)2

2
−mi+1

(uo2
f − ulag

i )2

2

)
J.-P. Braeunig, MULTIMAT, Würzburg | September 2015 | PAGE 35/37



Collocated Remap scheme

Figure : Double rarefaction wave, 200 cells, internal energy (above)
and entropy (below), comparison between isentropic schemes:
WILKINS q=0 + internal energy remap, EUCCLHYD θ = 0 isentropic
+ total energy remap, with and without corrected “k”.

J.-P. Braeunig, MULTIMAT, Würzburg | September 2015 | PAGE 36/37



Conclusion-Perspectives

� Goal: propose a multimaterial scheme adapted to HPC on
exascale computers constraints.

� Collocated Lagrange EUCCLHYD-Remap is robust,
conservative and entropic (first order).

� Multidirectional direct remap and multimaterial interface
sharp reconstruction is classical and robust. An explicit
partial pressure relaxation is available.

� The trade off with total energy to reduce entropy error
should be further investigated, i.e. quasi-conservation should
be proved and quantified.

� The algorithm parallelization efficiency should be evaluated
(scalability).
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