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Our principal goals are to reduce dissipation in  
cell-centered hydro (CCH) and to improve accuracy in ALE schemes 

Motivation: 
 

 Cell centered hydro (CCH) schemes produce excellent results on many 
test problems, but appear too dissipative on others 

 
     Similarly, swept face advection is satisfactory for many problems, but it 

performs poorly on others 
     
We wish to: 
 
     Reduce dissipation in CCH by introducing a new variation called 

Corner Gradient Reconstruction (CGR**) 
 
     Improve smooth flow solutions without degrading those with shocks 
 
     Achieve higher order accuracy within the framework of linear cell faces 
     

 Although we focus on our particular implementation (CCH2*),  
the method should be beneficial in other CCH formulations 

     
We will contrast CGR & xALE***  
with previous methods: 
 
 

*  C&F 2012 
**  JCP 2015 
***  MultiMat 2013 

CCH2 
2nd order  

CCH 

CGR 
Corner gradient  
reconstruction 

xALE 
2nd order  

exact intersection  
remap 

Swept 
2nd order  

unsplit face  
advection 
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Lagrange 
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Motivation: CCH2 dissipates kinetic energy 
 in shockless problems such as an elastic bending plate 

Large deformation of an elastic Be Plate 
Initial velocity field activates only first flexural mode  

80x16 cells 
Times are near maxima of displacement 

NECDC Oct 2014 - 3 NECDC Oct 2014 - 3 

Reference: SGH with Q artificially set to 0 –  
impractical, but possible for smooth flow.   
Noisy, but does not dissipate kinetic energy 

 
CCH2: Loses amplitude and  

is clearly more dissipative 
 
CGR: Free of excess dissipation 

Amplitude essentially constant 

The amplitude  
should not decrease  
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Weseloh, Pagosa 
Sample Problems, 2011 
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Lagrange CCH overview: There are three steps of interest - 
 Note that “conservation” has 2 different contexts 

Finite volume method: Cell 
averages are found by integrating 
surface fluxes 
 
 
 
 
 
The challenge in CCH is the 
determination of the surface 
fluxes 

 
Mz !uz = dN

z
"∫ ⋅σ → Ni ⋅σ p

i

i

z

∑

Flux conservation requires the 
sum of the fluxes at nodes to 
vanish 
 
 
 
 
A dissipation relation enforces 
the 2nd law  
 
 
 
An approximate Riemann solution 
determines the fluxes 
 
 
& completes the cycle 

N ⋅ σ p −σ c( ) ⋅ u p − uc( ) ≥ 0

   
u p &σ p

Nodal CV = 
Dissipation  

region 

  

uc

σ c

 

u x( )
σ x( )

Cell z 

  

uc

σ c   

u p

σ p

Cell z 

  

u p

σ p

  

uz

σ z

N

   
u p &σ p
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Conservative reconstruction:  Finite volume 
provides no information about the 
distribution of quantities within a cell.  
 
Infer a distribution by fitting to adjacent 
cells & requiring conservation within the cell 
 
 
 
 
 
This yields discontinuous values of                 
at the cell surface 

 
CGR differs from traditional CCH2 

only in the reconstruction 

   uc &σ c

 

Vzuz = u x( )dV
z
∫

Vzσ z = σ x( )dV
z
∫

Ni ⋅σ p
i

i

p

∑ = 0

Ni ⋅u p
i

i

p

∑ = 0
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Now consider some alternative polynomial reconstructions  
for the Lagrange phase* 

1st order 
constant 
Godunov 

CCH2 
2nd order 

piecewise linear 
van Leer 

3rd order 
quadratic 

PPM 

CGR 
2nd order 

piecewise linear 

The notion of “reconstruction” grew from 
Eulerian advection schemes 

and is unusual in Lagrangian methods 
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PPM-like (black) is 3rd order and the most accurate   
 

However, 3D requires an expensive solution to a 10 
equation system for each of 3 velocity components and 6 
stress components 

 
 
 
 
 
 
 
CCH2 (blue) uses the traditional 2nd order reconstruction  

 
Requires only Cramer’s rule.  

 
Corner gradient reconstruction (CGR - red) uses a piecewise 
linear fit between cell averages  
 

Also requires only Cramer’s rule 
 

Although formally 2nd order, CGR is a much closer 
representation of the 3rd order function 
 
CGR captures a 3rd order characteristic: differing slopes 
within a cell 

 

uk x( ) = uok

+a1
kδ x + a2

kδ y + a3
kδ z

+a11
kδ x2 + a22

k δ y2 + a33
k δ z2

+a12
k δ xδ y + a13

k δ xδ z + a23
k δ yδ z

* The notion of “reconstruction” is common in 
Eulerian advection, but seldom thought about 

in the Lagrange step 
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For regular grids in 2D, the stencils for the  
reconstruction polynomials reduce to: 

CCH2 uses a 
4 point stencil and is 

 inaccurate at the 
corners  

uc

 ∇u
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CGR stencil is  
effectively 9-point 

and is 
more accurate at the 

corners than 2nd order  

uc
∇ pu

3rd order uses a 
 9-point stencil is  

more accurate at the 
corners than 2nd order 

uc

? 

 9-point 
stencils require 

special 
handling of 

ghost cells at 
mesh corners 
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When should dissipation occur? 
Smooth flows should not dissipate 

Consider velocity 
 
Fit a polynomial across a cell and its 
neighbors (red) such that the integral is 
conserved: 
 
 

 
Then do the same for an adjacent cell (blue) 

 
If the polynomials are coincident at the 
interface,  

the flow is locally smooth 
  
and there should be no dissipation 

 
If not, the discontinuity  

is the source of dissipation 
 
and is resolved by an approximate 
Riemann solution that yields 

 
Vzuz = u x( )dV

z
∫

Our goal is the reduction of dissipation, not necessarily 
the most accurate polynomial reconstruction 
 
We need a numerical notion of “smooth flow” 

Right  
polynomial 

Left  
polynomial 

Riemann  
solution 

uz

u p

uc

δ pcu

Here, the flow 
is not smooth 
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δ pcu
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The surface fluxes can be decomposed 
into a reconstruction and a discontinuity 
 
 
 
 
 
We assert a sufficient condition for 
dissipation 

δ pcσ = µn̂δ pcu

u p = uz +δ czu+δ pcu
σ p =σ z +δ czσ +δ pcσ

How does the discontinuity affect the total energy 
and the decomposition into kinetic and internal energy? 

With this substitution,  
 
the total energy rate equation can then be exactly 
decomposed into a sum of kinetic       & internal 
contributions 
 
 
 
 
in which 
 
 
 
 
 
 
 
 
 
 
 
 
The source of dissipation lies in the             terms 
 
Reconstruction reduces the dissipation by 
reducing the discontinuity 

 

Tz = dN ⋅ σ p ⋅u p( )
z
∫

= Kz + Wz + Rz + Dz⎡⎣ ⎤⎦

δ pcu

Kinetic energy 
 
Reversible work due to  
average stress 
 
Work due to the 
reconstruction 
 
Irreversible dissipation 

 

Kz = dN ⋅σ p
z
∫
⎡

⎣
⎢

⎤

⎦
⎥ ⋅uz = Uz ⋅uz

Wz =σ z : dN u p
z
∫
⎡

⎣
⎢

⎤

⎦
⎥ =σ z : Γ z

Rz = dN ⋅ δ czσ ⋅δ pcu+δ czu ⋅δ pcσ( )
z
∫

Dz = dN ⋅µn̂ δ pcu( )2
z
∫ ≥ 0

 
!Dz & !Rz

 
Ez 

Kz
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Right  
polynomial 

Riemann  
solution 

uz

u p

uc

δ pcu

δ czu

Left 
polynomial 
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In CGR, discontinuity & dissipation occur only when  
“curvature” requires  a shift to guarantee conservative reconstruction 

Shifted right  
polynomial 

Shifted left  
polynomial 

Riemann  
solution 

δ pcu

uz

uc

u p

u0
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In each cell corner 
 
 
 

The left and right polynomials are initially 
coincident (black), corresponding to no 
dissipation 

 
However, a change in slope within the cell 
(“curvature”) requires a shift to guarantee 
conservation 
 
 
 

This results in a discontinuity at the interface 
and therefore dissipation 
 
No shift occurs when the slopes within the cell 
are identical  

 
Monotonicity is enforced by limiting the gradient 
with a Barth-Jespersen scheme.    
 

Because the slope affects the conservation 
integral, the limiter        and the shift              are 
coupled 

 

 
Vzuz = u x( )dV

z
∫

u x( ) = u0 + β x − xz( ) ⋅∇ pu

u0 β( )β

∇ pu

u0

u p

For details, see 
Burton et al,  

JCP 2015 

Extension to  
2D & 3D is 

conceptually 
straightforward 
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We tested CGR (& xALE) under a wide variety of conditions 

Hydro:  
 Lagrange 
 Swept face advection 
 Exact intersection remap 

 
Geometry: 

 1D (X) 
 2D (XY RZ) 
 3D (XYZ) 

 
Flow: 

 Smooth 
 Vortical 
 Shock 

 
Meshes: 

 Rectangular 
 Polar 
 Skewed 

 
Materials: 

 Fluids 
 Elastic 
 Elastic-plastic solids 
 Elastic-plastic hardening 
  

MultiMat 2015 - 10 
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SMOOTH & VORTICAL FLOW 
PROBLEMS 

Be Beam (elastic solid) 
Taylor-Green (vortical flow) 

Coggeshall 
Kidder shell & ball 

Verney & Howell (elastic-plastic solid) 
Taylor anvil (hardening EP solid) 
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2D Taylor Green is a test of vortical flow:  
CGR reduces the error & has a convergence rate approaching 3rd order 

t = 0 

t = 0.5 

t = 0.75 

30x30 mesh 
 

Color represents  
velocity magnitude 

CCH2 
CGR  

is significantly better 

t = 0.5 

Taylor & Green, 1937 
Drikakis et al, 2007 
Dobrev et al 2012 
Burton et al 2015 

The flow should be incompressible 
and the velocity field should not 

change with time 
 
 
 

The solution also involves a time 
dependent energy source from a 

manufactured solution 

   
u0 = sin πx( )cos π y( ) ,−cos πx( )sin π y( ){ }

Velocity contours should remain 
stationary in time 
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Zone size 

CGR converges at  
nearly 3rd order 

CCH2 is 1st order 

2.6 

1.0 

Lagrange mesh is 
severely deformed 

at t=0.75 
 

So we look at 
earlier 

convergence 
t=0.25 
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Using ALE, we can run Taylor-Green through multiple revolutions: 
CGR + xALE improves accuracy and convergence to near 3rd order 

CCH2+swept 

CGR+swept 

CGR+xALE 

4 rev 
t=10.24 

3 rev 
t=7.68 

2 rev 
t=5.12 

1 rev 
t=2.56 

0 rev 
t=0.0 

4 rev 
3 
2 
1 

Related TG calculation with material 
interfaces to illustrate rotation. 
Black is the analytic solution 
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Brown & Morgan 2015 

2.9 

1.0 
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Shock-free spherical compression of 
polytropic gas with initial linear velocity 
field u0(r)=-r0 
 
The problem is characterized by high 
specific kinetic energy (~1) and low 
internal energy (~1e-6). 
 
Relatively small velocity perturbations 
give rise to large error in thermodynamic 
variables. 

Mesh and SIE at t=.6 
50x50x50 

Coggeshall & Meyer ter Vehn, 1992 

Scatter plots:  
one dot per cell 

 
Exact solutions 

 in black 
 

SIE = specific internal energy 
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Distance 

SI
E 

CGR matches 
analytical value 

CCH2 has 
large scatter 

Analytical value 

D
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Distance 

CGR matches 
analytical value 

CCH2 has 
large scatter 

Analytical value 

Distance 

SI
E 

   
   

Spherical Coggeshall problem on a box grid: 
CCH2 has large perturbations not present in CGR 

3D results are similar 

CCH2 CGR 



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA Multimat 2015 - 15 

2D Kidder shell tests symmetry:  
Given P(r,t) at outer surface compare with analytic r(t) 

t=0.22 

t=0. 

Because the surface has an 
Atwood number of unity,  

it is hydrodynamically unstable,  
and therefore sensitive  

to numerical perturbations 
 

In 2D, near perfect grids  
mitigate the error  

P(r,t) 

rinner=0.45 

Errors are small, but grow 
 

CCH2 has much  
larger error 

CGR remains near machine 
precision 

t2 growth  
rate  
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Time 

Zone size 

CGR converges  
2nd order 

CCH2 does not converge  
at finer resolution 

because the instability 
feeds through 

Inner (heavy) and outer (light) radii 

Kidder, 1974 
Maire, 2009 

Carre et al, 2009 
Boscheri et al, 2014 

Villar et al, 2014 
Morgan et al, 2015 
Burton et al, 2015 
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router=0.50 
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3D Kidder shell:  Near perfect grids cannot be generated in 3D, 
resulting in much greater sensitivity to numerical error 

t=0.22 

t=0. 

Errors are small, but grow 
 

CCH2 initial error is an 
order of magnitude larger 

CGR  

t2 growth  
rate  
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CGR 

CCH2 

As there exists no completely 
symmetrical tessellation of a sphere, 

numerical errors are larger in 3D 
 

Pressure is applied at larger radius, so 
that the perturbations propagate inward 

P(r,t) 

r(t) 

Both appear to converge at 
near 2nd order, but … 

 
the instability eventually 

feeds through 
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Reduced 
connectivity 

2.0 
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The outer surface is hydrodynamically unstable 
and is especially sensitive to the numerical perturbations of CCH2 

t=0.22 

CCH2 has much greater 
perturbations than CGR 

CGR is relatively smooth 

Reduced 
connectivity point 

Wall heating 

Surface of interest 
remains relatively smooth 

but CCH2 shows faint 
ripples 

MultiMat 2015 - 17 
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SHOCK PROBLEMS 
Sod 
Noh 

Sedov 
Saltzman 

Elastic-plastic piston (solid) 
Adiabatic release 
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2D Noh on a box grid: results are comparable in XY,  
but  CGR is clearly superior in RZ 

Noh 1987 

Scatter plots:  
one dot per cell 

 
Exact solutions 

 in black 
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The 3D skewed Saltzman mesh causes spurious vorticity:  
CGR results are far superior to CCH2 

CCH2 

CGR 
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0.70 

0.60 

0.75 

CCH2 CGR 

CGR ran 
past 0.95 

CCH2 crashed 
before 0.80 

Caramana et al, 1999 
Maire et al, 2009 

Boscheri et al, 2014 
Burton et al, 2015 

X
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ALE PROBLEMS 
Triple Point 

Helium Bubble 

xALE is an exact intersection  
2nd order remap scheme 

described at Multimat 2013 
 

Swept is an unsplit 2nd order  
face advection scheme 
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Triple point problem: The combination CGR + xALE  
is significantly better than CCH2 and swept alternatives 

Although very early flow is self-similar, 
there is no converged solution at late 
times 
 
The rollup at t=5.0 should increase with 
resolution unless perturbed by 
numerical error, leading to Kelvin-
Helmholtz instabilities 

D’yadechko, 1965 
Shashkov et al, 1991 

Maire, 2009 
Galera et al, 2010 

Loubere et al, 2010 
Burton et al, 2012 

The triple point problem simulates a 
shock hitting a material discontinuity, 
producing vortical flow  
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CCH2          CGR 

CGR has  
180o more rollup 

 than CCH2 
 

and more detail  
in the shock 

CGR + xALE 

CCH2 + xALE 

CGR + swept 

Swept has 
significant error 

at 45o  
due to lack of 

corner coupling  

Mesh 200x100  
t=5.0 density contours 
Red & blue lines are  
material interfaces 

CCH2 + swept 

Swept has  
even less rollup 
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Haas & Sturtevant JFM 1987, Fig 8 

Haas & Sturtevant 1987 
Quirk & Karni 1996 
Galera et at 2010 

Loubere et al 2011 
Kenamond et al, 2014 

Burton et al, 2015 

80x600 

Haas-Sturtevant helium bubble experiment: 
CGR has much less dissipation than CCH2 and a better match to data 

CGR + xALE 

Setup from Kenamond 2014 
80x600 mesh 

270us 333us 788 us 411 us 

Synthetic Schlieren images 

Schlieren images detect density gradient 

air ρ,γ = 1.293,1.4
He ρ,γ = 0.1785,1.66
Piston u = 123.3946

CGR matches Schlieren images  
much better than CCH2 

411 us 538 us 
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CCH2+xALE and CCH2+swept 
results are similar 
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Thoughts to take away 

Our principal goal was to address excessive dissipation in CCH 
•  We have done so  
•  As demonstrated on a wide variety of test problems 
•  With results that are among the best we have seen 

We introduced an extension to CCH called Corner Gradient Reconstruction (CGR) 
•  CGR differs from traditional CCH2 only in the reconstruction step 
•  Conceptually simple 
•  Does not require solving large systems of equations in each cell 
•  Multi-dimensional 
•  Applicable to solids and fluids 
•  Potentially beneficial to CCH formulations other than our own 

 
CGR offers significant advantages over CCH2 

•  Improved directional accuracy 
•  Reduction in dissipation, especially for smooth flow problems 
•  Performs comparably or better for shocks 
•  Computational cost is comparable to CCH2 
 

xALE exact intersection remap 
•  Following up on our MultiMat 2013 presentation, we have shown that  

xALE performs much better than swept face advection for vortical flows  
such as Taylor-Green 
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2D Verney (RZ) problem 

0 µs 

150 µs 

Given an initial divergence free velocity field 
 
 
 
An elastic-plastic shell is initially on the yield 
surface 
 
It coasts inward until the kinetic energy is 
dissipated by plastic work 
 
For an INCOMPRESSIBLE material, the analytic 
stopping radius is 3 cm 
 
A COMPRESSIBLE material will have acoustic 
waves and overshoot 

  
u r( ) = u0

Router

r
⎛

⎝⎜
⎞

⎠⎟

α −1

Verney 1968 
Howell & Ball 2002  
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2D Verney 
CGR has much smaller error and higher convergence rate 

CCH2: 1.28 
convergence rate 

CGR: 1.63 
convergence 

rate 
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CGR error is 
much less 
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64x256 
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CCH2 error is large at 
coarse resolution 
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Time 

CCH2 

Coarse resolution 32x128 

CGR 

For an INCOMPRESSIBLE 
material, the analytic stopping 

radius is 3 cm 
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Adiabatic release problem  tests the ability to track the 
adiabat following a shock compression 

p ρ( ) = ρ
ρ0

−1
⎛
⎝⎜

⎞
⎠⎟
ρ0c0

2

up =
1
2
uL

pH = ρ0up c0 + up( )
ρH = ρ0 1+

up
c0

⎛
⎝⎜

⎞
⎠⎟

eH =
pH ρH − ρ0( )
2ρHρ0

eA ρ( ) = eH + c0
2 ρ − ρH

ρ0
− ln ρ

ρH

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

Base zoning 
90 cells 
h=10-2 

Bazan & Rieben, LLNL-PRES-463883 
Owen et al, LLNL-PRES-557631 
Barlow 2011 

Percent energy error at tracer location for 
various resolutions 

CCH2 CGR 

Both are the best 
Lagrange results we 

have seen 
  

but CGR is superior 
to CCH2 

 
The error is less and 
more uniform over 

the release 
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dx = 10-2, 5.x10-3, 2.5x10-3, 1.25x10-3, 6.25x10-4 

Release Release 
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The elastic-plastic piston problem tests the strength formulation 
at the elastic-plastic limit 

The objective is to match speed and 
shape of the elastic precursor 
 
Dissipation can mask the elastic 
precursor entirely 
 
The CGR results are sharper 
for both the elastic and plastic 
waves 

Piston velocity 10 cm/s 
Aluminum properties:  

•  density ρ0=2.79 g/cm3  
•  shear modulus G=0.286 Mb 
•  yield stress Y0=0.0026 Mb 

Gruneisen EOS: 
•  c0=0.533 
•  s=1.34 
•  Γ=2.0  

CGR 
CCH2 
Analytic 

CGR 
CCH2 
Analytic 

Elastic precursor 

Elastic precursor Plastic wave 
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