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A direct ALE method for multi-material flows on 
unstructured grids is under development

 Based on the generalization of a single-material Godunov scheme to 
multiple materials

 Key features
– Direct solution of the multi-material ALE hydro equations 
– Approximate Riemann solvers in moving reference frame
– Mesh velocity based on local fluid velocity with smoothing
– Algebraic treatment of volume fraction equation

 Preliminary results on initial test problems have been obtained
– Multiple interface methods under investigation
– Further testing/validation is in progress



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
UNCLASSIFIED

UNCLASSIFIED

Slide 3

The ALE algorithm solves the flux-conservative Euler 
equations written for a moving reference frame

 The velocity of the reference frame is denoted by wi with Eulerian and 
Lagrangian treated as limits

 Or in a more compact vector notation

Lagrangian limit:  wi = ui
Eulerian limit:       wi = 0
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 Lagrange-plus-remap: Mesh moves with fluid in Lagrange step, then relative 
to the fluid in remap step

 Direct ALE: Mesh moves independently of fluid at its own velocity

The hydro equations are solved directly in the moving 
reference frame with no Lagrange step
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 Hydro equations are written for a material k
– Separate thermodynamic state for each material in a control volume
– Single fluid velocity and momentum equation applied as a closure 

The multi-material extension adds equations for the 
volume fraction αk
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 Eulerian form of volume fraction equation:

 Transform to moving reference frame:

 Rewrite in flux-conservative form (and dropping the w subscript):

Advection is computed directly as part of the system 
of equations instead of from volume intersections
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The ALE equations are discretized with an edge-based 
Finite Element method for linear tetrahedra

 Semi-discrete weak Galerkin formulation with element-based stencil :

 Algebraically equivalent edge-based stencil:
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Consistency and conservation are ensured by 
construction for all choices of mesh velocity

 Semi-discrete equation for mesh point v is written 
with a single Riemann flux         on each edge as

 Consistency and conservation statements:
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A directionally unsplit flux on each edge is computed 
from an approximate Riemann problem along Di

vw

 Rusanov, HLL, and HLLC schemes have been implemented

 Rusanov equations (shown for simplicity):
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A MUSCL reconstruction on primitive variables is used to 
obtain a second-order upwind method

 Given a field variable f with nodal values fv and fw, the reconstruction on 
edge vw is written as

Piecewise linear: k = -1
Piecewise parabolic: k = 1/3
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 Difference formula:

where m is the total number of 
stages and 1 ≤ k ≤ m

 Same scheme used for mesh 
motion

 Summary of ALE step
1. Compute mesh velocity 
2. Compute gradients 
3. On each edge:

a. Compute MUSCL 
reconstruction

b. Compute flux from Riemann 
solver

4. Sum flux increments to points
5. Update         to n+1
6. Update geometry (xi, V,        ) to 

n+1
7. Update      to n+1
8. Update p and c from EOS

The semi-discrete ALE equations are integrated in 
time with an explicit multi-stage scheme
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The mesh motion is computed from a physics-based 
mesh velocity rather than a quality-based mesh relaxer

 Smoothed Lagrangian approach: Set wi = ui then iterate on the linear 
system

 Helmholtz approach: Set wi equal to the irrotational component of ui as 
computed from a Helmholtz decomposition 

The scalar potential is computed from 
the solution to the Poisson equation

Key features:
1. Mesh velocity is independent 

of local mesh size
2. Mesh is stationary where the 

fluid is stationary
3. High-vorticity regions behave 

more Eulerian
4. Low-vorticity regions behave 

more Lagrangian
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A mesh force model similar to Lagrangian Q models is 
applied to the mesh velocity for additional robustness

 The mesh velocity at each node v is evolved according to

 The pseudo-force Fi is computed as a surface integral of pseudo-pressures
(recall that di is a surface area normal of a control volume facet)

 The pseudo-pressure q is computed from VNR- and TQS-like terms

VNR-like term TQS-like term
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The single-material ALE algorithm has been heavily 
verified on shock and shock-free problems

m = 2

Noh LagrangianTaylor-Green ALE

Sedov ALE
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The interface equation is initially being solved with a 
SuperBee limiter and Godunov flux

 Interface advection test problem (Eulerian)
– Two materials, same state, constant ui

 The Hyper C compressive limiter also is being tested
– Caveat: the limit of zero numerical diffusion is perfect mesh imprinting! May 

not be the best choice on highly unstructured grids…

Donor cell solution MUSCL + SuperBee
solution

Initial interface 
location
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Similar results are obtained with ALE using a prescribed 
mesh velocity

 Interface advection test problem (ALE)
– Sinusoidal mesh velocity along

the length of the domain

Donor cell solution MUSCL + SuperBee
solution
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The SuperBee limiter obtains much closer to first-order 
convergence compared to other limiters

 Eulerian advection test + convergence study

Donor cell

MUSCL + minmod

MUSCL + Van Leer

MUSCL + Superbee

m = 0.50

m = 0.65

m = 0.71

m = 0.91
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Initial donor cell results have been obtained on the 
shock tube problem

 Results are qualitatively correct (and diffuse as expected)
– Smoothed Lagrangian mesh velocity
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A direct ALE method for multi-material flows on 
unstructured grids is under development

 Based on the generalization of a single-material Godunov scheme to 
multiple materials

 Key features
– Direct solution of the multi-material ALE hydro equations 
– Approximate Riemann solvers in moving reference frame
– Mesh velocity based on local fluid velocity with smoothing
– Algebraic treatment of volume fraction equation

 Preliminary results on initial test problems have been obtained
– Multiple interface methods under investigation
– Further testing/validation is in progress
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