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Overview

e motivation

e existing local methods — do not preserve divergence
e treating boundaries for local methods

e problem statement

e divergence preserving global methods

e treating boundaries for global methods

e humerical examples
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Motivation

o 2 different representation of vector field on the mesh — normal
components to the faces, vectors at nodes




Motivation

o part of discrete vector and tensor calculus

e Lagrangian gas dynamics discretizations based on Godunov
method

— the normal component of a vector on an edge between two
cells is computed from the solution of a 1D Riemann problem
in the direction orthogonal to the edge

— but the Cartesian components are needed at nodes in order
to compute the nodal motion
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Notations

e zone (cell) z; point (vertex, node) p = (z,y); face (edge) f; py(f)
and p.(f) begin and end points of the face; oriented unit
normal to the face n; = (n%, n}).

p(t)

e the center of the face f = (p,(f) + p.(f))/2

o vector field w = (u, v) with nodal components w, = (u,, v,) and
normal face components wy = (w, ny).
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State of the art — local method

e [Shashkov, Swartz, Wendroff, JCP 1998] 1-st order method —
minimization of the functional

ot = > {(lwp+ (f—p)- Vwylnyg) —ws}’,

Ovyp Ovyp

feS(p) Oup  Oup
for unknowns w, and its gradient Vw,, = ( gu 9y )

ox oy

e stencil S(p) of the functional ®-!
— 12 edges

o differentiating of the functional
o/t with respect to 2
components of w, and 4
components of Vw, gives 6
linear equations for 6 unknowns
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Treating boundaries for local method

e extending the 1-st order local method to treat also boundaries

¢ stencil on the left boundary extended by horizontal internal
edge to be able to approximate % on OG mesh

e stencil at the lower-left boundary corner extended by 2 edges
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Piston/wall velocity boundary conditions

e assume left boundary is flat vertical piston moving with
velocity U, i.e. at left boundary point p; ; the z-velocity

. . . . ouq
component is u; ; = U and and its y derivative =/ = 0

o substitute these constant values into the functional @, which
remains function of 4 unknowns, namely v, ; and 3 remaining
components of Vw ;

o differentiating ®1} with respect to the 4 unknowns gives 4
linear equations for 4 unknonws

e similarly on lower, upper and right walls — normal component
and its transversal derivative are zero

e at corners both velocity components are given
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Problem statement

e divergence acting from faces to zones

D/
(DIVf W)z _ ( VW)Z’ D w). = 3 w8y,
© fEF(2)

V. — volume of the zone, S; — length of the face, s, ¢ {1, -1} -
orientation of the normal, 7(z) — set of all faces of the zone -.

e divergence acting from nodes to zones

DP +
(DIVP w), = ( VW)Z . (DPw), = Z [(pr(f) . Wpe(f)’ Sﬁ;;)]
Z FEF(2)

where Sy, = Syns; .

o from face components w; construct nodal components w,
preserving divergence (D” w), = (D' w) _

ol .
4})\

- Los Alamos % ﬁé\g

EST.1943 9




Divergence preserving method

assume to have an accurate reference (target) approximation
w7, of the vector field at the nodes

minimize the functional

B (W, \.) = % > (W= W)V + ) [N (DPwy): — (DYwy).)]

peP 2€Z

where P is a set of all mesh points and Z is a set of all cells
and )\, are Lagrange multipliers

differentiate the functional with respect to unknowns w, and ),
give global system of linear equations

differentiate ®*(w,, \. with respect to \, gives preservation of
divergence (D?w)_ = (D’ w)
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Rearranging divergence from nodes

e divergence from nodes (D* w)_ =, »(., [(pr(f);wpe(”, Sf,z)}

e rearrange to summation over points

S ;- z+S + z
Drw). = Y |(wn 2200 [ 5,0+ 60),
pEP(z)

where operators ¢, and ¢, act on
nodal functions v and v P

f(p)

e functional ;3" _,(w, —w!)*V, +> . .z |\ (DPw,). — (D/wy).)]
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Differentiation with respect to w,,
e a part of functional

1
D AWy =23 D [Whte) — Upm o) Up — (Tpt(e) — Ty () V]

z€Z pEP zeZ(p)
o differentiation with respect to w, =

(up,v,) produces
SIA)
DP)f )\, = (0 22),
(D% ( GES )

where operators (61 \.) and (0] \.)
act on zonal function )\,

pH2)

1 P(z
(5:];)‘2)]9 D) Z Az (yp+(2)_y'p_(2)) v
z€Z(p)
1
(5?3)‘2)19 -9 Z Ae (Zpr(2) = Tp(2))
z€Z(p)




Final system

functional % Zpep(wp — W]t?)Z‘/;) +2 ez [)\z ((Dpwp)z = (waf)z)}
derivative with respect to w,
Vy(wp = wp) + ((DP)TA) =0

p
gives 1
Wp =W, A6 —

p vp <<DP>T>‘2)p

substituting into the divergence constraint (D? w)_ = (D’ w)

z

1

— [(Dpv(Dp)T> )\Z] = —(Dpwf))z + (waf)z, Vz
p z

the system close to the system obtained for solving elliptic

equation with cell centered discretization of the scalar function

and nodal discretization of the vector function [Hyman,

Shashkov, Steinberg, JCP 1997]

\. by solving the SPD system, then w, = w! — & ((D?))\.)

PV,
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Piston/wall velocity boundary conditions

e normal components are known at boundary points, thus at a
boundary point P only the parallel component of

1
Wp=Wh — v ((Dp)T)\Z)P

Is used when substituing into the divergence constraint

(D?w), py = (D’ w)Z(P) , 2(P) € Z(P)

e the part of (D? w)z< P depending on the given normal
component w is in

1
(DPV(DP)T) )\Z] = —(Dpwfg)z(p) + (waf)z(P)
p z(P)

moved to its RHS
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Implementation issues

implemented on logically rectangular mesh

different stencils and coefficients of local functionals, different
stencils of many global operators for cells/points inside, on the
left/right/bottom/top boundaries and at 4 corners — quite
complicated formula processing both for local and global
methods

2 types of boundary conditions — given by wr on boundary
faces F'; piston/wall boundary conditions with given normal
component w; for boundary points P

computer algebra system REDUCE [A.C. Hearn, 2004] used to
derive all formulas and for automatic code generation

over 5 000 lines (300 kB) of Fortran source code generated
automatically

local methods — LAPACK used to solve small (up to 6 x 6)
systems of linear algebraic equations

global system for )\, solved by the conjugate gradient method

A

- 0.
. Los Alamos % ﬁﬁ}n
EST.1943 15

AAAAAAAAAAAAAAAAA




Numerical results — meshes
e computational domain is the square (z,y) € [-1/2,1/2]?

e smooth non-orthogonal mesh obtained from an uniform grid in

(¢,7n) by the mapping
z(&,m) = £+ 0.1sin(27¢)sin(27n)

y(&n) = n+0.1sin(27E) sin(2mn)

e random non-smooth non-orthogonal mesh by randomly
moving all internal nodes in squares with sides //4

i
LT
I,

I

7
"',._;-.dg i
-

A A A AT

A

O

W,
A

I
.
#l

LT = g
s

)

NATIONAL LABORATORY R. LiSka, M. ShaShkOV, Multimat, WﬁerUrg, 8 Sept 2015

yAN . . . , o
Divergence preserving reconstruction of nodal components of the vector field 0
- Los Alamos sence p ° o % ﬁ\/f;%m
16



Smooth test from [Shashkov etal. JCP 1998]

e max errors for vector field w = (z —y + 2% — %,z + y + 2% + 9?)

grid smooth non-smooth
method M W DIV CURL w DIV CURL
local 32 | 0.32E-2 0.10E-1 0.98E-2 | 0.20E-2 0.39E-1 0.21E-1
64 | 0.80E-3 0.26E-2 0.26E-2 | 0.54E-3 0.23E-1 0.14E-1
128 | 0.20E-3 0.64E-3 0.65E-3 | 0.14E-3 0.11E-1  0.74E-2
256 | 0.50E-4 0.16E-3 0.16E-3 | 0.34E-4 0.64E-2 0.42E-2
div-presr 32 | 0.31E-2 0.65E-13 0.97E-2 | 0.21E-2 0.17E-13 0.40E-1
64 | 0.80E-3 0.99E-13 0.26E-2 | 0.57E-3 0.28E-13 0.33E-1
128 | 0.20E-3 0.18E-12 0.65E-3 | 0.14E-3 0.77E-13 0.17E-1
256 | 0.50E-4 0.43E-12 0.16E-3 | 0.39E-4 0.18E-12 0.94E-2

e local method repeats results from [Shashkov etal. JCP 1998]

e global method preserves divergence exactly and keeps the
convergence of the vector field and curl
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Shock-like test from [Shashkov etal. JCP 1998]

e max errors for vector field w = (e2%2/(1 + ¢2%), 0)

grid smooth non-smooth
method M W DIV CURL W DIV CURL
local 32 | 0.27E-1  0.54E+0 0.15E+0 | 0.19E-1 0.37E+0 0.20E+0
64 | 0.77E-2 0.19E+0 0.47E-1 | 0.50E-2 0.12E+0 O0.15E+0
128 | 0.20E-2  0.52E-1 0.13E-1 | 0.14E-2 0.81E-1 0.72E-1
256 | 0.51E-3 0.13E-1 0.32E-2 | 0.35E-3  0.41E-1 0.46E-1
div-presr 32 | 0.24E-1 0.65E-13 0.15E+0 | 0.17E-1 0.17E-13 0.19E+0
64 | 0.65E-2 0.93E-13 0.47E-1 | 0.45E-2 0.30E-13 0.17E+0
128 | 0.17E-2 0.18E-12 0.13E-1 | 0.13E-2 0.74E-13 0.91E-1
256 | 0.41E-3 0.32E-12 0.32E-2 | 0.32E-3 0.16E-12 0.47E-1
div-presr 32 | 0.74E-2 0.82E-13 0.15E+0 | 0.61E-2 0.22E-13 0.19E+0
normal 64 | 0.20E-2 0.71E-13 0.47E-1 | 0.19E-2 0.29E-13 0.17E+0
BCs 128 | 0.52E-3 0.17E-12 0.13E-1 | 0.50E-3 0.65E-13 0.91E-1
256 | 0.13E-3 0.32E-12 0.32E-2 | 0.14E-3 0.19E-12 0.45E-1

e local method with normal BCs give very similar results

e global method preserves divergence exactly and keeps the

convergence of the vector field; with normal BCs improves the

errors
X
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Noh-like velocity field
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e radially symmetric inward directed vector field w = —|w| %)
0 for r < r,in
‘W‘ — 1—coS(7T(7°2—7“mm)/a) for Trrim S r S Torin +a , Tmin = 0.27 a=0.1
1 for r > ryin +a
grid smooth non-smooth
method M w dir(w) DIV w dir(w) DIV
local 32 | 0.15E+0 0.32E-1 0.67E+01 | 0.13E+0 O0.31E-1 0.50E+1
64 | 0.55E-1 0.11E-1 0.27E+01 | 0.41E-1 0.96E-2 0.28E+1
128 | 0.16E-1 0.29E-2 0.14E+01 | 0.12E-1 0.27E-2 0.16E+1
256 | 0.43E-2 0.76E-3 0.71E+00 | 0.33E-2 0.78E-3 0.75E+0
div-presr 32 | 0.72E-1 0.37E-1 0.85E-13 | 0.52E-1 0.50E-1 0.25E-13
64 | 0.22E-1 0.12E-1 0.17E-12 | 0.18E-1 0.18E-1 0.42E-13
128 | 0.68E-2 0.32E-2 0.42E-12 | 0.61E-2 0.59E-2 0.70E-13
256 | 0.17E-2 0.83E-3 0.46E-12 | 0.18E-2 0.17E-2 O0.15E-12
P
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Conclusion

e treating boundaries for local method
e global divergence preserving method including boundaries

e piston and wall normal boundary conditions for local and
global methods

e humerical examples — global method preserves divergence and
keeps convergence for vector field
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