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Overview

• motivation

• existing local methods – do not preserve divergence

• treating boundaries for local methods

• problem statement

• divergence preserving global methods

• treating boundaries for global methods

• numerical examples
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Motivation

• 2 different representation of vector field on the mesh – normal
components to the faces, vectors at nodes
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Motivation

• part of discrete vector and tensor calculus

• Lagrangian gas dynamics discretizations based on Godunov
method

– the normal component of a vector on an edge between two
cells is computed from the solution of a 1D Riemann problem
in the direction orthogonal to the edge

– but the Cartesian components are needed at nodes in order
to compute the nodal motion
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Notations

• zone (cell) z; point (vertex, node) p = (x, y); face (edge) f ; pb(f)
and pe(f) begin and end points of the face; oriented unit
normal to the face nf = (nxf , n

y
f).
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• the center of the face f = (pb(f) + pe(f))/2

• vector field w = (u, v) with nodal components wp = (up, vp) and
normal face components wf = (w, nf).
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State of the art – local method

• [Shashkov, Swartz, Wendroff, JCP 1998] 1-st order method –
minimization of the functional

ΦL1p =
∑

f∈S(p)

{([wp + (f − p) · ∇wp],nf)− wf}2 ,

for unknowns wp and its gradient ∇wp =

(
∂up
∂x

∂up
∂y

∂vp
∂x

∂vp
∂y

)

• stencil S(p) of the functional ΦL1

– 12 edges

• differentiating of the functional
ΦL1p with respect to 2
components of wp and 4
components of ∇wp gives 6
linear equations for 6 unknowns
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Treating boundaries for local method

• extending the 1-st order local method to treat also boundaries

• stencil on the left boundary extended by horizontal internal
edge to be able to approximate ∂vp

∂x on OG mesh
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• stencil at the lower-left boundary corner extended by 2 edges

Divergence preserving reconstruction of nodal components of the vector field
R. Liska, M. Shashkov, Multimat, Würzburg, 8 Sept. 2015

7



Piston/wall velocity boundary conditions

• assume left boundary is flat vertical piston moving with
velocity U , i.e. at left boundary point p1,j the x-velocity
component is u1,j = U and and its y derivative ∂u1,j

∂y = 0

• substitute these constant values into the functional ΦL11,j, which
remains function of 4 unknowns, namely v1,j and 3 remaining
components of ∇w1,j

• differentiating ΦL11,j with respect to the 4 unknowns gives 4
linear equations for 4 unknonws

• similarly on lower, upper and right walls – normal component
and its transversal derivative are zero

• at corners both velocity components are given
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Problem statement

• divergence acting from faces to zones

(
DIVf w

)
z

=

(
Df w

)
z

Vz
,
(
Df w

)
z

=
∑

f∈F(z)

wf Sf ψf,z,

Vz – volume of the zone, Sf – length of the face, ψf,z ∈ {1,−1} –
orientation of the normal, F(z) – set of all faces of the zone z.

• divergence acting from nodes to zones

(DIVpw)z =
(Dpw)z
Vz

, (Dpw)z =
∑

f∈F(z)

[(
wpb(f) + wpe(f)

2
, Sf,z

)]

where Sf,z = Sf nfψf,z

• from face components wf construct nodal components wp

preserving divergence (Dpw)z =
(
Df w

)
z
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Divergence preserving method

• assume to have an accurate reference (target) approximation
wt
p of the vector field at the nodes

• minimize the functional

Φt(wp, λz) =
1

2

∑

p∈P

(wp −wt
p)

2Vp +
∑

z∈Z

[
λz
(
(Dpwp)z − (Dfwf)z

)]

where P is a set of all mesh points and Z is a set of all cells
and λz are Lagrange multipliers

• differentiate the functional with respect to unknowns wp and λz
give global system of linear equations

• differentiate Φt(wp, λz with respect to λz gives preservation of
divergence (Dpw)z =

(
Df w

)
z
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Rearranging divergence from nodes

• divergence from nodes (Dpw)z =
∑
f∈F(z)

[(
wpb(f)

+wpe(f)
2 , Sf,z

)]

• rearrange to summation over points

(Dpw)z =
∑

p∈P(z)

[(
wp,

Sf−(p),z + Sf+(p),z

2

)]
= (δx u)z + (δy v)z .

where operators δx and δy act on
nodal functions u and v

(δx u)z =
1

2

∑

p∈P(z)

(yp+ − yp−)up

(δy v)z = −1

2

∑

p∈P(z)

(xp+ − xp−) vp ,

p

p

+

−

p

f (p)

f (p)
+

−

• functional 1
2

∑
p∈P(wp −wt

p)
2Vp +

∑
z∈Z

[
λz
(
(Dpwp)z − (Dfwf)z

)]

Divergence preserving reconstruction of nodal components of the vector field
R. Liska, M. Shashkov, Multimat, Würzburg, 8 Sept. 2015

11



Differentiation with respect to wp

• a part of functional

∑

z∈Z

λz(D
pwp)z =

1

2

∑

p∈P

∑

z∈Z(p)

[
(yp+(z) − yp−(z))up − (xp+(z) − xp−(z)) vp

]

• differentiation with respect to wp =
(up, vp) produces

(Dp)
†
p λz =

( (
δ†x λz

)
p(

δ†y λz
)
p

)

where operators
(
δ†x λz

)
p

and
(
δ†y λz

)
p

act on zonal function λz
(
δ†x λz

)
p

= −1

2

∑

z∈Z(p)

λz
(
yp+(z) − yp−(z)

)

(
δ†y λz

)
p

=
1

2

∑

z∈Z(p)

λz
(
xp+(z) − xp−(z)

)

p

p

p

z

(z)

(z)

−

+
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Final system

• functional 1
2

∑
p∈P(wp−wt

p)
2Vp+

∑
z∈Z

[
λz
(
(Dpwp)z − (Dfwf)z

)]

• derivative with respect to wp

Vp(wp −wt
p) +

(
(Dp)† λ

)
p

= 0

gives
wp = wt

p −
1

Vp

(
(Dp)†λz

)
p

• substituting into the divergence constraint (Dpw)z =
(
Df w

)
z

−
[(

Dp 1

Vp
(Dp)†

)
λz

]

z

= −(Dpwt
p)z + (Dfwf)z, ∀z

• the system close to the system obtained for solving elliptic
equation with cell centered discretization of the scalar function
and nodal discretization of the vector function [Hyman,
Shashkov, Steinberg, JCP 1997]

• λz by solving the SPD system, then wp = wt
p − 1

Vp

(
(Dp)†λz

)
p
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Piston/wall velocity boundary conditions

• normal components are known at boundary points, thus at a
boundary point P only the parallel component of

wP = wt
P −

1

VP

(
(Dp)†λz

)
P

is used when substituing into the divergence constraint
(Dpw)z(P ) =

(
Df w

)
z(P )

, z(P ) ∈ Z(P )

• the part of (Dpw)z(P ) depending on the given normal
component w⊥P is in

−
[(

Dp 1

Vp
(Dp)†

)
λz

]

z(P )

= −(Dpwt
p)z(P ) + (Dfwf)z(P )

moved to its RHS
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Implementation issues
• implemented on logically rectangular mesh

• different stencils and coefficients of local functionals, different
stencils of many global operators for cells/points inside, on the
left/right/bottom/top boundaries and at 4 corners – quite
complicated formula processing both for local and global
methods

• 2 types of boundary conditions – given by wF on boundary
faces F ; piston/wall boundary conditions with given normal
component w⊥P for boundary points P

• computer algebra system REDUCE [A.C. Hearn, 2004] used to
derive all formulas and for automatic code generation

• over 5 000 lines (300 kB) of Fortran source code generated
automatically

• local methods – LAPACK used to solve small (up to 6× 6)
systems of linear algebraic equations

• global system for λz solved by the conjugate gradient method
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Numerical results – meshes
• computational domain is the square (x, y) ∈ [−1/2, 1/2]2

• smooth non-orthogonal mesh obtained from an uniform grid in
(ξ, η) by the mapping

x(ξ, η) = ξ + 0.1 sin(2πξ) sin(2πη)

y(ξ, η) = η + 0.1 sin(2πξ) sin(2πη)

• random non-smooth non-orthogonal mesh by randomly
moving all internal nodes in squares with sides h/4

(a) (b)

Fig. 6. Types of meshes: (a) - smooth mesh; (b) - random mesh

tives of the nodal function g at the cell i+ 1/2, j + 1/2) are

(
δg

δx

)

i+1/2,j+1/2
=

(gi+1,j+1 − gi,j)(yi,j+1 − yi+1,j) + (gi+1,j − gi,j+1)(yi+1,j+1 − yi,j)

2Vi+1/2,j+1/2
,

(
δu

δy

)

i+1/2,j+1/2

=
(gi+1,j+1 − gi,j)(xi+1,j − xi,j+1) + (gi,j+1 − gi+1,j)(xi+1,j+1 − xi,j)

2Vi+1/2,j+1/2
,

where Vi+1/2,j+1/2 is the area of the cell i+ 1/2, j + 1/2.

The discrete divergence and curl acting from nodes to cells are computed from
these discrete derivatives.

The discrete divergence computed from the nodal components is compared
with the discrete divergence in the cell computed from the normal components
(1). The discrete curl is compared with the exact value at the cell center. The
errors are evaluated in the max norm.

6.1 Types of meshes

The simplest mesh is the uniform mesh with all cells being squares. The next
one is the orthogonal mesh uniform in both x and y directions with all the cells
being identical rectangles. The smooth non-orthogonal mesh [19] is obtained
by the mapping

x(ξ, η) = ξ + 0.1 sin(2πξ) sin(2πη) , y(ξ, η) = η + 0.1 sin(2πξ) sin(2πη)(15)

from an uniform grid on the square [−1/2, 1/2]2 in the space (ξ, η) into the
same square in (x, y), see Fig. 6 (a). The random non-smooth non-orthogonal
mesh is created from the uniform 2D mesh (consisting of squares h × u) by
randomly moving all internal nodes in squares with sides h/4 centered at the
position of the node in the uniform mesh, see Fig. 6 (b).
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Smooth test from [Shashkov etal. JCP 1998]

• max errors for vector field w = (x− y + x2 − y2, x+ y + x2 + y2)

grid smooth non-smooth
method M w DIV CURL w DIV CURL
local 32 0.32E-2 0.10E-1 0.98E-2 0.20E-2 0.39E-1 0.21E-1

64 0.80E-3 0.26E-2 0.26E-2 0.54E-3 0.23E-1 0.14E-1
128 0.20E-3 0.64E-3 0.65E-3 0.14E-3 0.11E-1 0.74E-2
256 0.50E-4 0.16E-3 0.16E-3 0.34E-4 0.64E-2 0.42E-2

div-presr 32 0.31E-2 0.65E-13 0.97E-2 0.21E-2 0.17E-13 0.40E-1
64 0.80E-3 0.99E-13 0.26E-2 0.57E-3 0.28E-13 0.33E-1

128 0.20E-3 0.18E-12 0.65E-3 0.14E-3 0.77E-13 0.17E-1
256 0.50E-4 0.43E-12 0.16E-3 0.39E-4 0.18E-12 0.94E-2

• local method repeats results from [Shashkov etal. JCP 1998]

• global method preserves divergence exactly and keeps the
convergence of the vector field and curl
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Shock-like test from [Shashkov etal. JCP 1998]

• max errors for vector field w = (e20x/(1 + e20x), 0)

grid smooth non-smooth
method M w DIV CURL w DIV CURL
local 32 0.27E-1 0.54E+0 0.15E+0 0.19E-1 0.37E+0 0.20E+0

64 0.77E-2 0.19E+0 0.47E-1 0.50E-2 0.12E+0 0.15E+0
128 0.20E-2 0.52E-1 0.13E-1 0.14E-2 0.81E-1 0.72E-1
256 0.51E-3 0.13E-1 0.32E-2 0.35E-3 0.41E-1 0.46E-1

div-presr 32 0.24E-1 0.65E-13 0.15E+0 0.17E-1 0.17E-13 0.19E+0
64 0.65E-2 0.93E-13 0.47E-1 0.45E-2 0.30E-13 0.17E+0

128 0.17E-2 0.18E-12 0.13E-1 0.13E-2 0.74E-13 0.91E-1
256 0.41E-3 0.32E-12 0.32E-2 0.32E-3 0.16E-12 0.47E-1

div-presr 32 0.74E-2 0.82E-13 0.15E+0 0.61E-2 0.22E-13 0.19E+0
normal 64 0.20E-2 0.71E-13 0.47E-1 0.19E-2 0.29E-13 0.17E+0
BCs 128 0.52E-3 0.17E-12 0.13E-1 0.50E-3 0.65E-13 0.91E-1

256 0.13E-3 0.32E-12 0.32E-2 0.14E-3 0.19E-12 0.45E-1

• local method with normal BCs give very similar results

• global method preserves divergence exactly and keeps the
convergence of the vector field; with normal BCs improves the
errors
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Noh-like velocity field

• radially symmetric inward directed vector field w = −|w|(x,y)r

|w| =





0 for r ≤ rmin
1−cos(π(r−rmin)/a)

2 for rmin ≤ r ≤ rmin + a
1 for r ≥ rmin + a

, rmin = 0.2, a = 0.1

grid smooth non-smooth
method M w dir(w) DIV w dir(w) DIV
local 32 0.15E+0 0.32E-1 0.67E+01 0.13E+0 0.31E-1 0.50E+1

64 0.55E-1 0.11E-1 0.27E+01 0.41E-1 0.96E-2 0.28E+1
128 0.16E-1 0.29E-2 0.14E+01 0.12E-1 0.27E-2 0.16E+1
256 0.43E-2 0.76E-3 0.71E+00 0.33E-2 0.78E-3 0.75E+0

div-presr 32 0.72E-1 0.37E-1 0.85E-13 0.52E-1 0.50E-1 0.25E-13
64 0.22E-1 0.12E-1 0.17E-12 0.18E-1 0.18E-1 0.42E-13

128 0.68E-2 0.32E-2 0.42E-12 0.61E-2 0.59E-2 0.70E-13
256 0.17E-2 0.83E-3 0.46E-12 0.18E-2 0.17E-2 0.15E-12
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Conclusion

• treating boundaries for local method

• global divergence preserving method including boundaries

• piston and wall normal boundary conditions for local and
global methods

• numerical examples – global method preserves divergence and
keeps convergence for vector field
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