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A quick reminder how (A)SPH and related meshless
methods work.

• The physics variables (mi , v
α
i , Sαβ

i , ...) are defined at an arbitrary
set of points in space.

• These points move with the material velocity, arbitrarily
reconnecting with new neighbors.

• Each point has an associated resolu-
tion/smoothing scale hi .

• hi defines the set of neighbors point i interacts
with.

• A basis function (or interpolation kernel)
W (r , h) is used to relate quantities between
points.

• (A)SPH formalism describes the continuous
representation of the nodal variables and their
spatial gradients.
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So what’s wrong with SPH?

• SPH is based on a simple interpolation theory

〈f (x)〉
SPH

=

∫
x ′
dx ′ f(x ′)W

(
x − x ′, h(x ′)

)
≈
∑
j

mj

ρj
FjW (x − xj , hj)

• W is the interpolation kernel, generally a cubic spline.
• Assumes the normalization

∫
x′ dx

′W (x − x ′, h(x ′)) = 1.
• However,

∑
j mj/ρjW (x − xj , hj) ≈ 1.

• For disordered points or near surfaces this approximation can be off by a
factor of 2 or more.

• Because of this lack of consistency SPH interpolation is not zeroth
order consistent, i.e., even a constant function will not be
interpolated exactly.

LLNL-PRES-676783



4/23

Reproducing Kernels allow exact reproduction of functions.

• In the late 90’s Reproducing Kernels (RK) were proposed as an
enhanced form of SPH interpolation.1

• Posit a corrected kernel (to linear terms) of the form

〈f (x)〉RK =
∑
j

VjFjWR
j , WR

j ≡
(
Ai + Bβ

i x
β
ij

)
Wj

• Solve for (Ai ,B
α
i ) by requiring∑

j

VjWR
j = 1

∑
j

Vjx
α
ijWR

j = 0

• After some algebra we find

Ai =
[
m0 −

(
m−12

)αβ
mβ

1m
α
1

]−1
Bα
i = −

(
m−12

)αβ
mβ

1

where

m0 ≡
∑
j

VjWj , mα
1 ≡

∑
j

xαij VjWj , mαβ
2 ≡

∑
j

xαij x
β
ij VjWj

1Liu, Jun, and Zhang 1995; Liu, Jun, Li, et al. 1995.
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Interpolation and gradients with RK are much more
accurate.

• We randomly place points in the box
(x , y) ∈ ([0, 1], [0, 1]) and sample the
function f (x) = 1 + x .
• SPH shows the greatest errors along the

boundaries.
• RK interpolates the function and its

gradient to round-off.

〈f (x)〉 SPH 〈f (x)〉 RK

〈f (x)〉 profile

〈∂x f (x)〉 profile
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So why haven’t RK based methods supplanted SPH?
• Reproducing kernel interpolation makes enforcing conservation

more difficult.

• The ordinary SPH momentum equation is

Dvαi
Dt

= −
∑
j

mj

[(
Pi

ρ2i
+

Pj

ρ2j

)
∂αWij + Πβα

ij ∂
βWij

]

• Implies Fα
ij = −Fα

ij so long as

∂αWij = −∂αWji .

• WR
j breaks this symmetry because

(Ai ,B
α
i ) are unique to each point:

=⇒ loss of rigorous conservation!

• RK methods to date have largely
ignored this problem.
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The standard reproducing kernel momentum equation.

• A typical RK discretization for the momentum equation directly
employs the simple RK gradient operator

Dvαi
Dt

= −ρ−1i ∂βσαβ = ρ−1i

∑
j

Vjσ
αβ
j ∂βWR

j

• Does not manifestly conserve linear momentum.

• Authors counting on higher accuracy of the differencing to keep
the momentum error under control.2

• Most RK applications have been in low-energy solid modeling
(tool cutting, bending beams, etc.)
• This approach fairly successful for such applications.

• The lack of conservation is a weakness for strong shock/high
energy applications however.

2Bonet and Kulasegaram 2000; Bonet, Kulasegaram, and Rodriguez-Paz
2004.
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A conservative form of the momentum equation.
• We can derive an explicitly conservative form of the momentum

equation by returning to the basic flux conservation equations
convolved with volumetric integrals of the RK basis functions.

• Dilts demonstrates this procedure in the derivations of MLSPH3.

• We derive this form in the context of RK interpolation theory.4

mi
Dvαi
Dt

= −1

2

∑
j

ViVj

{(
σαβi + σαβj

)(
∂βWR

j − ∂βWR
i

)
−

(Qi + Qj)
(
∂αWR

j − ∂αWR
i

)}
• Note Fij = −Fji , so we have restored exact conservation of linear

momentum.

• This relation forms the core of Conservative Reproducing Kernel
Smoothed Particle Hydrodynamics (CRKSPH).

3Dilts 2000.
4Frontire et al. 2015, in preparation.

LLNL-PRES-676783



9/23

The CRKSPH evolution equations.

• The remaining evolution equations (appropriate for solids) are

Dρi
Dt

=− ρi∂αvαi ← Potential weakness!

∂βvαi =
∑
j

Vj

(
vαj − vαi

)
∂βWR

j

mi
Dεi
Dt

=
1

2

∑
j

ViVj

(
σαβj + Qjδ

αβ
)(

vβi − vβj

)(
∂αWR

j − ∂αWR
i

)
• At the end of each step the specific thermal energy εi is evolved

using the same compatible discretization derived for SPH.5

• CRKSPH manifestly conserves mass, linear momentum, and total
energy to machine precision.

5Owen 2014.
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Test case: the Verney imploding shell.

• The classic “stopping shell” test problem.6

• A cylindrical shell of Be is given an initial inward radial velocity
profile such that all the kinetic energy will be converted via plastic
work to internal energy at a known final inner radius.
• Initial radii: R0 = 8cm, R1 = 10cm
• Final expected inner radius: r0 = 4cm
• Osborne equation of state
• Constant shear modulus and yield strength
• Analytic solution assumes material is incompressible

and follows shockless evolution.

• Initial conditions as in Howell & Ball (2002).

• It is important to use the ellipsoidal sampling of
ASPH, as radial and azimuthal spacing of the
points changes anisotropically!

R0

R1

6Verney 1968; Howell and Ball 2002.
LLNL-PRES-676783



11/23

Cylindrical Verney implosion: point distributions, the
choice of sampling volumes, and plastic strains.

• It is interesting to examine how this problem behaves with
different methods of initializing the points:
• Points arranged in rings of equal radial and azimuthal steps.
• Points on a clipped lattice – antithetical to the physics geometry.

H
tensors

εplastic
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The energy and evolution of the radii match our
expectations for the 2D Verney implosion.

• In all cases (nr ∈ [10, 20, 40, 80]) the energy budgets show the
expected conversion of kinetic to thermal energy via plastic work.

• Binning the points in radial shells and following the mass averaged
radii histories is also nearly indistinguishable.

Energy evolution Mass averaged radii histories
LLNL-PRES-676783
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Snapshots of the radial plastic strain profiles are more
revealing.

• Radial profiles at t = 150µsec.
• The surface error in the SPH calculation is evident from the falloff

of εplastic near the surfaces.

• Scatter due to the enhanced stresses launched from the rough
surface in clipped lattice.
• More pronounced in CRK.

Seeded on rings Seeded on clipped lattice
LLNL-PRES-676783
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3D Verney implosion calculations tell a similar story.
• We show here a low-resolution

3D example (nr = 10, seeded
with clipped lattice).

• This investigation still in
progress:
• Go to higher resolutions.
• Try using our icosahedral shells

point generator.
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A flyer plate test allows us to examine strong shock
behavior.

• This is an idealized flyer plate problem suggested by Wayne
Weseloh and Fady Najjar.7

• An Al flyer plate impacts a Ta target at 0.18 cm/µsec.
• Employs a simplified Gruneisen equation of state (function of density

only).
• Steinberg-Guinan strength model.

• Analytic solution predicts post-shock
pressure of Pshock = 0.2753Mb.

• An interesting test of the SPH sur-
face problem, as materials start out
separated but then collide. 1cm 1cm

0.05cm

0.18 cm/µsec

ab a b

Al Ta

Al tracers Ta tracers

7Weseloh and Najjar 2011.
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Flyer plate profiles at t = 1.5µsec.

• CRK shows sharper transitions.

• Largest errors at collision point.

• Both methods slightly
underestimate the post-shock
pressure.

• Likely due to density equation.
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Flyer plate pressure histories.

• The tracers in the Al at the collision surface show the largest
deviations.

• In all cases SPH has
larger errors in the
pressure history.

• In the interior of
the plates both
methods converge
to the same un-
derestimate of the
analytic solution.

LLNL-PRES-676783



18/23

The Taylor anvil.

• Based on an experiment published
by Eakins & Thadhani8.

• Consists of a 7.5cm long, 1cm
radius cylindrical rod of Cu
impacting a wall at 205 m/sec.

• Though there is no analytic
solution, the Taylor anvil is useful as

• a stability test of the numerical
model;

• a check of strength and yield models.

• Modeled here as full cylinders,
which for visualization purposes are
clipped to quadrants.

8Eakins and Thadhani 2006.
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Plastic strain evolution in the Taylor anvil.

• Both SPH and CRKSPH model this
problem reasonably.

• CRK sees more plastic deformation
in the core of the foot, a bit more
extension of the foot, and slightly
more compression of the rod length.

• We can clearly see the SPH surface
error in the plastic strain
calculation.

• CRKSPH seems to treat the strain
consistently out to the surface.

Slice of εplastic
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Conclusions and future directions.

• CRKSPH improves on the weaknesses of SPH while maintaining
its strengths.
• Common strengths: conservative, meshfree, simple to understand and

implement, Lagrangian, . . .
• CRK strengths: Accuracy, consistency.
• Remaining weaknesses: need better mass density relation, filter for

parasitic modes.

• CRKSPH seems as good or better than ordinary SPH thus far.

• Future directions:
• We are experimenting with ideas for a better mass density equation.
• Also looking at some filtering ideas to treat parasitic modes/”tensile

error”.
• Is it worth going to higher-order sampling than linear? RK formalism

can be extended to an arbitrary order.
• Damage modeling for fracture and failure (already experimentally

implemented).

• See Cody Raskin’s upcoming talk for the fluid limit!
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Questions?
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