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A quick reminder how (A)SPH and related meshless
methods work.
e The physics variables (m;, v{*, 5’15 ...) are defined at an arbitrary
set of points in space.

e These points move with the material velocity, arbitrarily
reconnecting with new neighbors.

e Each point has an associated resolu- ° °
tion/smoothing scale h;. *  uegc .
e h; defines the set of neighbors point i interacts o / .
with. e o ° ®
[ ]
e A basis function (or interpolation kernel) ° . ° y
W(r,h) is used to relate quantities between . °° °
points. e
e (A)SPH formalism describes the continuous .

representation of the nodal variables and their

spatial gradients. UL_
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So what's wrong with SPH?

e SPH is based on a simple interpolation theory

X))epn = /, dx’' f(x')W(X — X', h(x"))
~ Z FiW(x = X, hj)

e W is the interpolation kernel, generally a cubic spline.
e Assumes the normalization [, dx'W(x — x’, h(x')) = 1.
o However, > . m;/p;W(x — x;, hj) =~ 1.
e For disordered points or near surfaces this approximation can be off by a
factor of 2 or more.
e Because of this lack of consistency SPH interpolation is not zeroth
order consistent, i.e., even a constant function will not be
interpolated exactly.
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Reproducing Kernels allow exact reproduction of functions.

e In the late 90's Reproducing Kernels (RK) were proposed as an
enhanced form of SPH interpolation.
o Posit a corrected kernel (to linear terms) of the form

(FONme = DO VEWE W = (4 + B/ w,
J

e Solve for (A;, B) by requiring
> Vi =1 Z Vixg WF =
J

o After some algebra we find

A= [mo— (m) mimg] T BE = ()" mf
where
my=Y VW, mf=>Y"xFVW;, m‘;ﬁ—z X7 Vi W
j j

'Liu, Jun, and Zhang 1995; Liu, Jun, Li, et al. 1995.
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Interpolation and gradients with RK are much more
accurate. (f(x)) profile

e We randomly place points in the box
(x,y) € (]0,1],[0, 1]) and sample the
function f(x) =1+ x.

o SPH shows the greatest errors along the
boundaries.

e RK interpolates the function and its
gradient to round-off.
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So why haven’t RK based methods supplanted SPH?

e Reproducing kernel interpolation makes enforcing conservation

more difficult.

Dv¢
Dt 72
J
e Implies F,-;?‘ = —F,-jo-‘
0" Wy = —0° Wi

&
Pl

so long as

WJR breaks this symmetry because

(A;, B*) are unique to each point:
— loss of rigorous conservation!

RK methods to date
ignored this problem.
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The ordinary SPH momentum equation is

P:
+ p;) oW + N 9° W,-J-]

[ SPH: I, ()
_RK: W)

20 -1.5

-1.0 —0.5 0.0 0.5 1.0 L5 2.0
n=a/h;



The standard reproducing kernel momentum equation.

e A typical RK discretization for the momentum equation directly
employs the simple RK gradient operator
Dv

o -1 _ -1 B R
ﬁ = —p; 100 = p; Z VJ'O';-X 8’BWJ-
J

e Does not manifestly conserve linear momentum.
e Authors counting on higher accuracy of the differencing to keep
the momentum error under control.?

e Most RK applications have been in low-energy solid modeling
(tool cutting, bending beams, etc.)

e This approach fairly successful for such applications.
e The lack of conservation is a weakness for strong shock/high
energy applications however.

2Bonet and Kulasegaram 2000; Bonet, Kulasegaram, and Rodriguez-Paz I—
2004. L
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A conservative form of the momentum equation.
e We can derive an explicitly conservative form of the momentum
equation by returning to the basic flux conservation equations
convolved with volumetric integrals of the RK basis functions.

e Dilts demonstrates this procedure in the derivations of MLSPH3.

e We derive this form in the context of RK interpolation theory.*
Dvi* 1 a aB\ (a8 voR _ aByuR
22 = 15 ] (o) (o o)
J

(@ + Q) (rwf - orwr) |

e Note Fjj = —Fj;, so we have restored exact conservation of linear
momentum.

e This relation forms the core of Conservative Reproducing Kernel
Smoothed Particle Hydrodynamics (CRKSPH).

3Dilts 2000. UL-

*Frontire et al. 2015, in preparation.
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The CRKSPH evolution equations.

e The remaining evolution equations (appropriate for solids) are
Dpi

Dt

R

v =3 Vi (v = v) W]

= — pi0*v} < Potential weakness!

J
m 2 LS v (037 @) (v - ) (oW - o)
J

e At the end of each step the specific thermal energy ¢; is evolved
using the same compatible discretization derived for SPH.?

e CRKSPH manifestly conserves mass, linear momentum, and total
energy to machine precision.

50wen 2014. UL'
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Test case: the Verney imploding shell.

e The classic “stopping shell” test problem.®

e A cylindrical shell of Be is given an initial inward radial velocity
profile such that all the kinetic energy will be converted via plastic
work to internal energy at a known final inner radius.

Initial radii: Ry = 8cm, Ry = 10cm

Final expected inner radius: rp = 4cm

Osborne equation of state

Constant shear modulus and yield strength

Analytic solution assumes material is incompressible

and follows shockless evolution.

e Initial conditions as in Howell & Ball (2002).
e It is important to use the ellipsoidal sampling of

ASPH, as radial and azimuthal spacing of the
points changes anisotropically!

®Verney 1968; Howell and Ball 2002. ut-'
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Cylindrical Verney implosion: point distributions, the
choice of sampling volumes, and plastic strains.

e It is interesting to examine how this problem behaves with
different methods of initializing the points:
e Points arranged in rings of equal radial and azimuthal steps.
e Points on a clipped lattice — antithetical to the physics geometry.

CRK — lattice CRK - rings CRK - lattice CRK -- rings

SPH - lattice SPH - rings SPH - lattice SPH - rings

LLLIa:
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The energy and evolution of the radii match our
expectations for the 2D Verney implosion.

e In all cases (n, € [10,20,40,80]) the energy budgets show the
expected conversion of kinetic to thermal energy via plastic work.

e Binning the points in radial shells and following the mass averaged
radii histories is also nearly indistinguishable.

. 10
0,05k —CRK
- — SPH
3 - o — Analytic inner stopping radius;
0.04 o |
0.03 ".,’ Fyo CRKTings _ Eyy SPH rings ||
) KN ... KECRKrings  --- KE SPH rings .
@ KY TE CRK rings TE SPH rings. £ -
FEiop CRK lattice _ Eyoy SPH lattice s !
0.02 KECRK lattice --- KE SPH lattice =
o K TE CRK lattice TE SPH lattice
6
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Energy evolution Mass averaged radii histories ut_-
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Snapshots of the radial plastic strain profiles are more
revealing.

e Radial profiles at t = 150usec.

e The surface error in the SPH calculation is evident from the falloff

of € near the surfaces.

plastic

e Scatter due to the enhanced stresses launched from the rough
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surface in clipped lattice.
e More pronounced in CRK.
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3D Verney implosion calculations tell a similar story.
e We show here a low-resolution 0

—CRK
— SPH

3 D exam ple ( nr f— 101 Seeded ) Analwc inner stopping radlus

with clipped lattice). .

o This investigation still in E¥
progress: T
e Go to higher resolutions. o

e Try using our icosahedral shells
point generator.
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A flyer plate test allows us to examine strong shock
behavior.
e This is an idealized flyer plate problem suggested by Wayne
Weseloh and Fady Najjar.”

e An Al flyer plate impacts a Ta target at 0.18 cm/usec.
e Employs a simplified Gruneisen equation of state (function of density

only).
e Steinberg-Guinan strength model. Al t{scers Ta tl:baccrs
a a
e Analytic solution predicts post-shock * % * ‘
pressure of Pgp o = 0.2753Mb.
e An interesting test of the SPH sur- Al Ta
face problem, as materials start out
separated but then collide. lem lem
0.05cm

—_—
0.18 cm/ psec

"Weseloh and Najjar 2011. UL'
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Flyer plate profiles at t = 1.5usec.

e CRK shows sharper transitions.

e Largest errors at collision point.

e Both method

s slightly

underestimate the post-shock

pressure.

Likely due to

gm/cm®)

=10

density equation.
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Flyer plate pressure histories.

e The tracers in the Al at the collision surface show the largest
deviations.

e In all cases SPH has
larger errors in the
pressure history.

0.4

e In the interior of 0.3
the plates both
methods  converge

to the same un- ' . SPHAIa

. ...SPHAID
derestimate of the T SPHTaa
analytic solution. , —SPHTab

... CRK'Al'a
---CRK Alb
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The Taylor anvil.
SPH CRK

e Based on an experiment published
by Eakins & Thadhani®.

e Consists of a 7.5cm long, 1cm
radius cylindrical rod of Cu
impacting a wall at 205 m/sec.

e Though there is no analytic
solution, the Taylor anvil is useful as

e a stability test of the numerical
model;
e a check of strength and yield models.
e Modeled here as full cylinders,
which for visualization purposes are
clipped to quadrants.

Time=150

®Eakins and Thadhani 2006. LL
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Plastic strain evolution in the Taylor anvil.

e Both SPH and CRKSPH model this
problem reasonably.

e CRK sees more plastic deformation
in the core of the foot, a bit more
extension of the foot, and slightly
more compression of the rod length.

e We can clearly see the SPH surface
error in the plastic strain
calculation.

e CRKSPH seems to treat the strain
consistently out to the surface.

LLNL-PRES-676783

SPH CRK

Time=150

Slice of €plastic

(

19/23



Conclusions and future directions.

e CRKSPH improves on the weaknesses of SPH while maintaining
its strengths.
o Common strengths: conservative, meshfree, simple to understand and
implement, Lagrangian, ...
e CRK strengths: Accuracy, consistency.
e Remaining weaknesses: need better mass density relation, filter for
parasitic modes.
e CRKSPH seems as good or better than ordinary SPH thus far.
e Future directions:
e We are experimenting with ideas for a better mass density equation.
e Also looking at some filtering ideas to treat parasitic modes/" tensile
error” .
e |s it worth going to higher-order sampling than linear? RK formalism
can be extended to an arbitrary order.
e Damage modeling for fracture and failure (already experimentally
implemented).

e See Cody Raskin's upcoming talk for the fluid limit! LI'
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Questions?

CRK

SPH

(4
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