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Target Applications

Multi-Material Shock Physics (ALE)

I Inertial confinement fusion (ICF)

I Materials science experiments

I Armor/target penetration

I Rayleigh-Taylor instabilities

Fluid Dynamics with Moving
Interfaces/Domains

I Shuttle launch/re-entry dynamics

I Store separation

I Rotating propellers

Charest et al. High-Order ALE MultiMat 2015



High-Order Methods

What are high-order methods?

I Used to improve the
spatial/temporal representation of
numerical solutions

I Advanced interpolants (usually
polynomials) of accuracy higher
than second-order

I Can be unstable/oscillatory →
produces unphysical solutions
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High-Order Accurate Discretization Methods

Higher accuracy for the same mesh size

I Capture wave-propagation phenomena (shocks & rarefaction
waves, contact surfaces)

I Capture varying scales

I Model complex geometries (irregular & curved boundaries)

Computational savings for the same accuracy requirements

I Unsteady flows

I Large numbers of solution variables (complex chemistry,
radiation)

More work per cell/node

I Well-suited for advanced architectures?
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Arbitrary Lagrangian-Eulerian (ALE) Methods

ALE methods for hydrodynamics solve the hyperbolic
time-dependent PDEs of the form:

∂U

∂t
+
−→∇ · ~F (U) = S ~x ∈ Ω(t) ⊂ R3

where the domain Ω(t) moves arbitrarily. There are two distinct
limits:

I The mesh is stationary → Eulerian limit.

I The mesh moves with fluid → Lagrangian limit.

How do we combine with high-order methods. Challenges include:

I Preserving geometric conservation laws.

I Avoiding splitting errors.

I Maintaining stability, i.e., robust/monotone solutions.

I Achieving formal temporal/spatial accuracy.
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Finite-Volume Formulation

General system of conservation laws for
a time-dependent computational
domain Ω(t)

∂U

∂t
+
∂E

∂x
+
∂F

∂y
+
∂G

∂z
= S

~wΩi(t)

Computational domain Ω(t) was sub-divided into smaller
finite-sized control volumes, Ωi(t)

Ω(t) =
⋃

Ωi(t)

Semi-discrete integral form for a moving control volume Ωi(t)

d

dt

(
|Ωi|Ūi

)
= −

∮
∂Ωi(t)

(
~F−U⊗ ~w

)
· n̂ dΓ +

∫
Ωi(t)

S dΩ
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Vertex-Based Formulation for Tetrahedral Meshes

Tetrahedral mesh

I Easier to mesh complex domains

Unknowns associated with vertices

I Avoids stiffness-related issues
encountered by cell-based ALE
formulations

I Approximately six times fewer
vertices than elements

I More nearest neighbors, i.e. larger
compact supporting stencils

Other unstructured high-order 3D ALE
schemes for hydrodynamics are cell-based

Primal Mesh, T (Ω)

Dual Mesh, D(Ω)

Ωi

n̂

Edge Midpoint
Element Centroid
Vertex

Sample dual volume
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High-Order Spatial Discretization Procedure

Control volumes, Ωi, and their surfaces, ∂Ωi, were sub-divided into
tetrahedral and triangular segments

Ωi =
⋃

Tt ∂Ωi =
⋃

Γs

Integrals discretized using standard Gaussian quadrature rules∫
Ωi

S dΩ =
∑
t

|Tt|
N∑
q=1

ωqSq +O
(
hr+1

)
∮
∂Ωi

~F · n̂ dΓ =
∑
s

|Γs|
M∑
q=1

[
ωq~Fq · n̂s

]
+O

(
hr+1

)
N and M > 1 for r > 1
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High-Order Piecewise Polynomial Interpolation

Based on k-exact reconstruction procedure of Barth (1993)

u(x, y, z)− P ki (x, y, z) = O
(
hk+1

)
Reconstruct a piecewise polynomial approximation for the solution
in each control volume Ωi

P ki (x, y, z) =

p1+p2+p3≤k∑
p1=0

∑
p2=0

∑
p3=0

(x− xi)p1(y − yi)p2(z − zi)p3Dp1p2p3

Solve a least-squares problem for the polynomial coefficients
D = {Dp1p2p3}, i.e., find D that minimizes

||AD− Ū||2

ND = 1
6(k + 1)(k + 2)(k + 3) unknown coefficients
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Hybrid Central ENO (CENO) Reconstruction

Problem:

I Polynomial interpolation can generate spurious oscillations.

Solution: CENO Reconstruction

I Piecewise polynomial approximation in smooth regions:

P ki (x, y, z) =

p1+p2+p3≤k∑
p1=0

∑
p2=0

∑
p3=0

(x−xi)p1(y−yi)p2(z−zi)p3Dp1p2p3

I Limited piecewise linear approximation near discontinuities:

P k=1
i (x, y, z) = ūi + φi

−→∇u · (~x− ~xi)

I Use a smoothness indicator to switch between reconstruction
procedures.
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ALE Mesh Velocity

d

dt

(
|Ωi|Ūi

)
= −

∮
∂Ωi(t)

(
~F−U⊗ ~w

)
· n̂ dΓ +

∫
Ωi(t)

S dΩ

Arbitrary Lagrangian-Eulerian (ALE)

I ~w 6= ~0 6= ~v

I Combine the advantages of both limits

I Use a Lagrangian reference as much as possible

I Revert towards an Eulerian reference to avoid mesh tangling

I Use velocity-based mesh smoothing
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Velocity-Based Mesh Smoother

d
dt

(
|Ωi|Ūi

)
= −

∮
∂Ωi(t)

(
~F−U⊗ ~w

)
· n̂ dΓ +

∫
Ωi(t)

S dΩ

Procedure:

1. Discretize the mesh velocity field using linear finite elements

2. Use fluid velocity as initial guess for mesh velocity (~w0 = ~v)

3. Solve a Laplacian for a new smoothed velocity field

−→∇ ·
[
µ
−→∇ ~w(~x, t)

]
= ~0

to a set relative tolerance ε.

4. Move vertices at new, smoothed velocity ~w
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Overall Solution Algorithm

Temporal evolution using high-order explicit RK:

1 Compute ∆tn and Qn
i = |Ωn

i |Ūn
i .

2 foreach intermediate stage s do

3 Reconstruct U (~x, ts).

4 Compute {~wj (ts)} analytically or using Laplacian-based smoother.

5 Compute Rs
i = dQs

i/d t.

6 Advance Qs
i to Qs+1

i using explicit RK time-marching.

7 Recompute the geometric parameters of the new mesh, i.e., |Ωs+1
i |,

based on new coordinates ~xs+1
j .

8 Update solution, Ūs+1
i ← Qs+1

i / |Ωs+1
i |.

This procedure guarantees geometric conservation
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Governing Equations

Euler equations for compressible flows:

∂ρ

∂t
+
−→∇ · (ρ~v) = Sρ

∂

∂t
(ρ~v) +

−→∇ · (ρ~v~v + p~I) = ~Sv

∂

∂t
(ρet) +

−→∇ · (ρ~vet + ~vp) = Se

et = e+
1

2
~v · ~v

For an ideal gas, p = (γ − 1)ρe.

Charest et al. High-Order ALE MultiMat 2015



Convection of an Isentropic Vortex

An initially uniform field is perturbed
at time t = 0 s by a cylindrical vortex

δT =
(γ − 1)β2

8γπ2
exp

(
1− r2

)
δu = − β

2π
y exp

(
1− r2

2

)
δv =

β

2π
x exp

(
1− r2

2

)
δw = 0
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Isentropic Vortex - Mesh Motion

Similar sinusoidal mesh motion

t = 0 s t = tmax = 0.1 s
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Isentropic Vortex - Temporal Error
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Isentropic Vortex - Spatial Error
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Isentropic Vortex - Computational Efficiency

k=2

k=1

k=3
k=4

Wall­Clock Time (s)

L
 N

o
rm

 o
f 

E
rr

o
r 

in
 

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
­8

10
­7

10
­6

10
­5

10
­4

10
­3

10
­2

10
­1

10
0

k=0

Moving Mesh

Charest et al. High-Order ALE MultiMat 2015



The Kidder Problem

Smooth, adiabatic compression (t < 0) followed by expansion
(t > 0) of an inviscid, polytropic ball of gas (Kidder, 1974).

ρ(~r, t) =
ρ0R

3
0

R3(t)
exp

[
− r2

R2(t)

]
p(~r, t) =

ρ0R
3
0R̈(t)

2R2(t)
exp

[
− r2

R2(t)

]
~v(~r, t) =

Ṙ(t)

R(t)
~r

where ~r is the radial position vector
and R(t) is the scale radius.
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The Kidder Problem - Mesh Motion

Pressure contours, 145k Tetrahedra

t = ±1 s t = 0 s
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The Kidder Problem - Reconstruction

Reconstructed density at each point

r (m)

D
en

si
ty

, 
 (

k
g
/m

3
)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

k=4
Exact

t = 1 s

t = 0 s

145k Tetrahedra

Charest et al. High-Order ALE MultiMat 2015



Moving Piston

280k Tetrahedra

t = 0 s

t = 0.7 s

1 m/s

The channel initially contains a stationary fluid with γ = 5/3 and

W(~x, 0) =
[
1 kg/m3, ~0 m/s, 10−6 Pa

]
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Moving Piston - Density Contours

Final density contours at t = 0.7 s

Uniform Mesh Skewed Mesh
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Sedov Blast Wave

An initial point source at the origin drives an outwardly
propagating shock wave.

t = 0 s

ρ(r, 0) = 1 kg/m3

~v(r, 0) = ~0 m/s

e(r, 0) =


3 eblast
4πr3

0

, r ≤ r0

0, r > r0

where r =
√
x2 + y2 + z2.
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Sedov Blast Wave

An initial point source at the origin drives an outwardly
propagating shock wave.

t = 0.125 s

ρ(r, 0) = 1 kg/m3

~v(r, 0) = ~0 m/s

e(r, 0) =
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Sedov Blast Wave

An initial point source at the origin drives an outwardly
propagating shock wave.
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Sedov Blast Wave

An initial point source at the origin drives an outwardly
propagating shock wave.
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Sedov Blast Wave

An initial point source at the origin drives an outwardly
propagating shock wave.
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Sedov Blast Wave
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Sedov Blast Wave - Reconstruction
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Sedov Blast Wave - Spherical Symmetry
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AMR Under Development

Sedov Blast Wave:

t = 0 s

Challenges:

I Maintain conservation
and accuracy through
prolongation/restriction
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AMR Under Development
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AMR Under Development
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AMR Under Development
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AMR Under Development

Sedov Blast Wave:

t = 1 s

Challenges:

I Maintain conservation
and accuracy through
prolongation/restriction
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Concluding Remarks & Future Research

Concluding Remarks

I Conservative: Proposed solution procedure maintained GCLs

I Accurate: Obtained up to 5th-order spatial and up to
4th-order temporal convergence for smooth problems

I Robust: Remained monotone/positive for problems with
discontinuities

Future/Ongoing Research

I Combine high-order ALE with adaptive mesh refinement

I Apply to multi-material problems
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Questions?
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Other Details

Interface Flux Evaluation

I Unique interface flux required at each quadrature point ~xq
I Solve a Riemann problem aligned with n̂s

~Fq · n̂s = F [ UL(~xq), UR(~xq), n̂s ]

I Rusanov (1967) and HLL (Harten, 1983) approximate
Riemann solvers
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Other Details

High-Order Time Integration

I Explicit multi-stage Runge-Kutta methods

Ūn+1
i = Ūn

i + ∆tn
s∑
j=1

bjKj

I One-, two-, three- and four-stage schemes considered
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Determination of Smoothness Indicator

I Step 1: Calculate α

α = 1−

∑
j

(
P k
j (~rj)− P k

i (~rj)
)2

∑
j

(
P k
j (~rj)− ūi

)2
I Step 2: Evaluate S (inspired by the definition of multiple-correlation

coefficients, Lawson, 1974)

S =
α

max ((1− α), ε)

(SOS −DOF )

(DOF − 1)

I Step 3: Compare to a pass/no-pass cutoff value Sc
I if S > Sc ⇒ smooth solution
I if S < Sc ⇒ non-smooth solution
I values for Sc in the range 1,000-5,000 seem to work well
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Behaviour of the Smoothness Indicator
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Mesh Smoothing Example

Contours of velocity in → direction

No Smoothing

ε = 10−2

ε = 10−3

ε = 10−6
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Smooth Function - Spherical Cosine

u(r) = 1 +
1

3
cos 10r

r =
√
x2 + y2 + z2

0 ≤ x, y, z ≤ 1
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Spherical Cosine - Error Analysis
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Discontinuous Function

Discontinuities in both:

I u(x, y, z)

I
−→∇u(x, y, z)
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Discontinuous Function - k=4 Reconstruction

Exact Solution 18M Tetrahedra
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Discontinuous Function - Smoothness Indicator

18M Tetrahedra Smoothness Indicator
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Discontinuous Function - k=4 Reconstruction

18M Tetrahedra

Distance, L
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Preservation of the Free Stream

Uniform flow prescribed at time
t = 0 s with:

ρ = 1 kg/m3

~v = (2, 2, 2) m/s

p = 1 Pa

Integrated in time until t = 1 s
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Preservation of the Free Stream - Mesh Motion

Prescribed sinusoidal grid motion:

wx = AxLx sin (ftt) sin (fxx) sin (fyy) sin (fzz) /tmax

wy = AyLy sin (ftt) sin (fxx) sin (fyy) sin (fzz) /tmax

wz = AzLz sin (ftt) sin (fxx) sin (fyy) sin (fzz) /tmax
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Preservation of the Free Stream - Errors

L∞ Norm

Elements k = 1 k = 2 k = 3 k = 4

28,000 6.88× 10−15 6.42× 10−15 9.14× 10−15 9.04× 10−15

224,000 7.68× 10−14 6.65× 10−14 6.34× 10−14 8.73× 10−14

756,000 3.17× 10−13 2.94× 10−13 3.53× 10−13 3.37× 10−13

1,792,000 6.38× 10−13 6.38× 10−13 5.97× 10−13 7.72× 10−13
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Smooth Supersonic Flow

I Method of manufactured (MMS) solutions used for
verification

I Manufactured steady solution of Roy et al. (2002, 2004)

ρ = ρ0 + ρx sin (aρxπx/L) + ρy cos
(
aρyπy/L

)
+ ρz sin (aρzπz/L)

u =u0 + ux sin (auxπx/L) + uy cos
(
auyπy/L

)
+ uz cos (auzπz/L)

v = v0 + vx cos (avxπx/L) + vy sin
(
avyπy/L

)
+ vz sin (avzπz/L)

w =w0 + wx sin (awxπx/L) + wy sin
(
awyπy/L

)
+ wz cos (awzπz/L)

p = p0 + px cos (apxπx/L) + py sin
(
apyπy/L

)
+ pz cos (apzπz/L)

I Mach number varying between 3 – 6
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Smooth Supersonic Flow - Exact Solution

Energy Mach Number

Pressure
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Smooth Supersonic Flow - Error Analysis
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Smooth Supersonic Flow - Computational Efficiency
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Shock Tube

Initial conditions at t = 0 sec:

W(x, 0) =

{
WL if x ≤ 0.5 m

WR otherwise

where

WL =

ρLuL
pL

 =

1.0
0.0
1.0


WR

ρRuR
pR

 =

 0.1
0.0

0.125


x (m)
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Shock Tube - Error Analysis
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Shock Tube - Computational Efficiency
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Moving Piston - Reconstructed Density

Reconstructed density at t = 0.7 s
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AMR Under Development

Shu-Osher Prolbem:

Charest et al. High-Order ALE MultiMat 2015
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