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!  We are exploring a range of topics related to computational hydrodynamics: 
–  Efficient computing on advanced computing architectures 
–  Automatic mesh refinement (AMR) and mesh coarsening 
–  Multiple materials 
–  Strength 
–  Failure 
–  Materials with phase transition 
–  Eulerian, Lagrangian, and ALE hydro methods  

We seek to develop 3D ALE hydrodynamic algorithms for unstructured 
tetrahedral meshes 
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!  Overview of ALE hydrodynamic algorithm 

!  Lagrangian hydrodynamic test problems 

!  ALE hydrodynamic test problems 

Outline 
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!  Staggered grid hydro (SGH) 
–  Momentum control volume 

(CV) is staggered with respect 
to the strain/energy volumes 

!  Point-centered hydro (PCH)  
–  CVs coincide (i.e. spatially 

collocated) 
–  The approach used in this 

work is PCH 

Control volumes (CV) are used to enforce conservation 

Strain  
control volume 

Cell 
ρ,σ ,e{ }

u{ }
Momentum  

control volume 

Control volumes for 
energy and momentum  

coincide around the 
vertex of the cell, p ρ,σ ,e,u{ }

u*,σ *{ }
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!  The objective of this research is to develop an ALE approach suitable for 
modeling shock problems on tetrahedron meshes  

!  The PCH approach is a viable option  
–  Previous research in Lagrangian PCH includes: 

•  Crowley 1971, Fritts and Boris 1979, Crowley 1985, Clark 1988,  
Gittings 1990, Sahota 1990, Scovazzi 2010, and Scovazzi 2013 

–  Previous research in Eulerian PCH includes: 
•  Waltz 2004, Waltz et. al. 2013 

–  Previous research in ALE PCH: 
•  Waltz et. al. 2013 

!  In this presentation, we present a new ALE PCH approach that is essentially 
Lagrangian when the mesh moves at the fluid velocity and is Eulerian when 
the mesh is stationary 
–  The approach reduces to pure Lagrangian motion in the limit of the mesh size 

going to zero or if the flow is linear 

The PCH approach has a rich history of research 
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Why essentially Lagrange?  A volume error arises when 
the mesh is moved at the fluid velocity rather than the 
contact wave velocity 

ΔVα

Δt
= Si ⋅ue( )

i∈α
∑

Vα = 1
4

Vz
z∈α
∑

PCH volume definitions: 

Lumped volume 

ue =
1
2
uα + uβ( )1) 

2) 

β

α

The Error: 
There will be no volume change 
when the node alpha is 
accelerating or decelerating and 
the beta nodes are moving at a 
constant velocity.  The Sod 
problem will expose this error. 
(Esmond and Thurber 2013) 
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Proof of error with definition (1): =0 =0 = constant uβ

The volume change will 
always be equal to zero for 
any mesh topology, any 
mesh surface normal 
definition, and any velocity. 

Proof of error with definition (2): 
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The volume error generates numerical oscillations at the contact 
discontinuity in the Sod problem and prevents convergence 

Mesh = 0.5 cm 
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Additional advective fluxes are used to remove the volume error 

!  Lagrangian CCH avoids this volume error by evolving the control volume vertices at the 
contact wave speed instead of the average of the nodal velocities 

!  The concept is to evolve the mesh at a velocity close to the Riemann velocity and then 
“remap” back to the PCH control volume location 

!  Rusanov fluxes as used in this work 

ΔVα
CCH

Δt
= Si ⋅uz

*( )
i∈α
∑

ΔVα

Δt
= Si ⋅ ui

* −δui( )( )
i∈α
∑

ΔVα
Adv

Δt
= Si ⋅δui( )

i∈α
∑ ≈ Si ⋅si ai( )

i∈α
∑

ui
* = ue +δui ≈ ue + ai

Advected volume 

fi
ρ = siai ρi

* − ρc( )
fi
ρu = siai ρi

*ui
* − ρcuc( )

fi
ρ j = siai ρi

* ji
* − ρc jc( )

Mass: 

Momentum: 

Total energy: 

ai is an approximation of the shock speed 

The actual PCH CV is moving at a drift 
velocity relative to the contact wave speed 
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The discrete conservation equations contain an extra flux to correct the 
volume error, which goes to zero in the limit of a zero mesh size or a 
linear flow 
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Analytic equations 

Discrete approximation 

problem on each segment of the nodal control volume surface, i inside the tetrahedron. The 1D Riemann advective
fluxes are denoted with a subscript i and a superscript ⇤. The Riemann velocity for the tetrahedron center and the
Riemann stresses in the corners of the tetrahedron center are calculated by solving a multidirectional Riemann-like
problem using every segment of the nodal control volume surface, i, inside the tetrahedron. Every segment inside
the tetrahedron is denoted as i 2 z. The Riemann velocity is denoted with a subscript z and a superscript ⇤. The
corresponding Riemann stresses are denoted with a subscript c and a superscript ⇤. The multidirectional Riemann-
like problem uses the quantities in all 4 corners, where as, the 1D Riemann problem uses only two corner values. The
quantities in a tetrahedron corner are denoted with a subscript c. The corner quantities are calculated by projecting
the quantity from the nodes to the tetrahedron center via a linear Taylor Series expansion and a limited gradient. The
projected velocity from a node to the cell center is uc where the subscript c denotes the corner. The Riemann velocity
from the multidirectional Riemann-like problem is u

⇤
z and the corresponding Riemann stress in the tetrahedron corner

is �⇤c.
Some summations in the paper are over nodes that include both the node ↵ and the neighboring nodes �. For

example, the summation over all the nodes in a tetrahedron z is denoted as p 2 z. The letter p is used because the
summation includes both the node ↵ and the neighboring nodes �.

3. Governing equations

The governing equations for mass, momentum, and total energy evolution are written in terms of an arbitrary mesh
velocity, w.

d
dt

Z

V

⇢dV +
I

@V

(dS · ⇢(u � w)) = 0 (1)

d
dt

Z

V

⇢udV +
I

@V

(dS · ⇢u(u � w)) =
I

@V

(dS · �) (2)

d
dt

Z

V

⇢ jdV +
I

@V

(dS · ⇢ j(u � w)) =
I

@V

(dS · � · u) (3)

where dS is an infinitesimally small surface area, V is the volume, the density is ⇢, u is the velocity, j is the specific
total energy, and � is the stress. In the Eulerian limit the mesh velocity, w is equal to zero. Likewise, in the Lagrangian
limit the mesh velocity is equal to the fluid velocity, u = w. The conservation equations are discretized using the edge-
based FE approach. In addition, the algorithm is derived such that it satisfies a series of key design objectives. The first
design goal for the new algorithm is it must be conservative by construction. Specifically, we seek to conserve mass,
momentum, and total energy for any mesh velocity and any mesh resolution. The second design goal for the new
algorithm is it should ensure a stable, monotone solution. The Riemann problems must add the appropriate amount of
dissipation at discontinuities so that the solution does not generate spurious oscillations. The last design goal for the
new algorithm is it should minimize dissipation on smooth flows. Excessive dissipation on smooth flows can have a
deleterious impact on a calculation. These design goals will be referenced in this paper.

3.1. Discrete governing equations

The governing analytic equations are discretized using the edge-based finite element (FE) approach discussed in
[47, 48, 49, 34]. Using this approach, the discrete equations take the form of

� (
U↵V↵)
�t

=
X

i2↵
(
Si · Fi) (4)

where U↵ are the conserved unknowns vector at the node, Si is the surface area normal vector of the iota, and Fi are
the corresponding fluxes on an iota surface. The conserved unknowns vector in Eq. (4) is

3

mass 

momentum 

total energy 

Rusanov fluxes ensure numerical 
stability and fix a volume error 
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2nd-order accuracy is achieved by 
reconstructing the fields with 

linear Taylor-Series expansions 
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A multidirectional Riemann-like problem is solved at the center of the 
tetrahedron 

Si ⋅qi = µc u
* − uc( ) ac ⋅Si

The Riemann-like problem is based on seminal works by Despres & Mazeran (2005), 
Maire et. al. (2007) (2009) and Burton et. al. (2012). 

Si ⋅σc
* = Si ⋅ σc + qi( )Riemann force: 

Si ⋅σc
*

i∈Ωh

∑ = 0Momentum conservation is 
enforced at tetrahedron center: 

u* =
µc ac ⋅Si uc − Si ⋅σc( )

i∈Ωh

∑

µc ac ⋅Si( )
i∈Ω
∑

Riemann velocity: 

Si ⋅σ
* = Si ⋅σc + µc u

* − uc( ) ac ⋅SiRiemann force: 

(13 Equations, 13 unknowns) 

This Riemann-like problem was 
successfully applied to contact surfaces 

(Morgan et. al. JCP 2013) and SGH 
(Morgan et. al. JCP 2014). 

α

β

Control volume for 
Riemann-like problem 

2D example 

Si ⋅qi

u*
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!  The mesh velocity, w, dictates whether the calculation is Eulerian, essentially 
Lagrangian, or ALE 
–  w=0 is the Eulerian limit 
–  w=u is the essentially Lagrangian limit 
–  w>0 and w<u is ALE 

!  The mesh smoothing equation (Waltz et. al. 2013) is 

!  The Laplacian is solved to a user specified tolerance 

For ALE, the mesh velocity is smoothed by solving a Laplacian equation 
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!  Overview of the ALE hydrodynamic algorithm 

!  Lagrangian hydrodynamic test problems 

!  ALE hydrodynamic test problems 

Outline 
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As demonstrated on the Sod problem, the essentially Lagrangian approach 
converges and is reasonably accurately on highly unstructured meshes 

The mesh is highly irregular along the inside 

13 
An interface treatment approach is necessary to 
prevent smearing of the contact discontinuity 
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The additional fluxes reduce to zero for smooth flows and in the limit of a 
zero mesh size 
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The Saltzman problem tests the robustness and symmetry preservation 
of a Lagrangian approach on an irregular, skewed mesh 

80 nodes along each edge 

100 nodes along each edge 

40 nodes along each edge 
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As demonstrated on Saltzman, the essentially Lagrangian approach has 
good mesh robustness and symmetry preservation   

80 nodes along the edge 

100 nodes along the edge 

40 nodes along the edge 

Density scale: 1 to 4 g/cc 
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The mesh robustness on Saltzman is maintained after the shock reflects 
from the wall 

Density scale is from 1 to 10 g/cc 
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The 3D Noh problem results illustrate the essentially Lagrangian 
approach is accurate at converting kinetic energy into internal energy 

Density scale is from 2 to 64 g/cc 18 
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The Taylor Green vortex results demonstrate the essentially Lagrangian 
approach is accurate on a smooth flow with vorticity 

T=0.5,  Resolution = 0.02 cm 

Velocity, scale 0 to 1 cm/us 

19 

using a highly unstructured mesh  
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!  Overview of the ALE hydrodynamic algorithm 

!  Lagrangian hydrodynamic test problems 

!  ALE hydrodynamic test problems 

Outline 
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The Sedov results illustrate the new ALE approach is reasonably accurate 
on problems with strong shocks 

Density scale is from 0 to 4 g/cc 21 
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The Kidder-ball problem results demonstrate the new ALE approach is 
accurate on a smooth, convergent flow problem 

22 

Time = 0us 

0.5us 

1.0us 
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The Taylor Green vortex results illustrate the new ALE approach is 
accurate on smooth flow problems with physical vorticity 

velocity scale is from 0 to 1 g/cc 23 
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The Triple Point problem results demonstrate the new ALE approach can 
model complex flows on highly unstructured meshes 

density scale is from 0 to 3.5 g/cc 24 
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!  A new ALE PCH approach was presented for modeling 3D complex flows on 
tetrahedral meshes 

!  A volume change error was discovered in Lagrangian PCH.  The error arose from 
evolving the control volume via the average of the nodal velocities 
–  The volume change error should be present in other Lagrangian methods that 

evolve the control volume via the average of the nodal velocities  

!  Additional fluxes are included to remove these volume errors 
–  The fluxes go to zero in the limit of a zero mesh size or if the flow is linear 
–  The fluxes must be temporally inline (Lagrange+remap will not work) 

!  The results from the ALE PCH approach compare favorably to analytic solutions and 
results from other ALE approaches 

!  The new approach shows promise 

In conclusion 
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