Radiative-Shock Solutions from Grey S_n-transport with Temperature- and Density-dependent Cross Sections

Jim Ferguson¹, Jim Morel², Rob Lowrie³

¹X-Division & ³CCS-2 Los Alamos National Laboratory Los Alamos, NM 87545, USA

²Department of Nuclear Engineering Texas A&M University College Station, Texas 77843, USA

Multimat 2015 Wuerzburg, September 7-11, 2015

LA-UR-15-26946

Ferguson, Morel, Lowrie (LANL, TAMU)

Radiative Shocks

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Overview

Introduction

- 2 The Radiation-Hydrodynamics Equations
- 3 Global Solution Algorithm
- 4 Reduced-System Solution Algorithm
- 5 Computational Results
- 6 Conclusions & Future Work

- A - TH

A generic shock solution

Assumptions

- The local material is sufficiently hot for radiation to affect the hydrodynamics > 10⁶[K] ~ 100[eV].
- Single material temperature.
- *S_n* radiation model.
- Grey, temperature- and density-dependent opacities and an ideal-gas γ-law EOS.
- An infinitely long shock-tube (thick-thick shocks).
- Material is non-relativistic.

What is a semi-analytic shock solution

- Relevant PDEs reduced to system of ODEs and integrated using a standard integrator with error control.
- Provides radiation hydrodynamic benchmark solutions assuming certain physics models.
- Improve our theoretical understanding:
 - Equilibrium Diffusion Radiative shocks can be continuous for small and large values of the Mach number, M_0 .
 - Nonequilibrium Diffusion A Zel'dovich spike may exist independently of the embedded hydrodynamic shock.
 - Radiative transfer Anti-diffusive shocks exist for certain ranges of \mathcal{M}_0 , which diffusion theory (i.e., $F_r \sim -\nabla E_r$) fails to model.
 - Bremstrahlung emission Transmissive radiation-pressure wave, analogous to the Marshak solution, at moderate \mathcal{M}_0 .

Previous approximate and semi-analytic solutions

- Sen and Guess (1957) recommended S_n via Chandrasekhar
- Heaslet and Brown (1963) M_0 and P_0 , weak to strong
- Ensman & Burrows (1994) collected RT/RH test problems because solutions already forgotten
- Drake (2007) 'adaptation zone', 'transmissive' (f > 1/3) and 'diffusive' ($f \approx 1/3$) precursor regions
- Lowrie and Rauenzahn (2007) semi-analytic equil. (1-T) diff.
- Lowrie and Edwards (2008) semi-analytic nonequil. (2-T) diff.

• McClarren and Drake (2010) - analytic anti-diff. $(F_r \sim -\nabla E_r)$

RH equations and the EOS

The 1-D nondim. steady-state radiation-coupled Euler equations are

$$\partial_{x} (\rho u) = 0,$$

$$\partial_{x} \left(\rho u^{2} + p_{m} \right) = -P_{0}S_{rp},$$

$$\partial_{x} \left[u \left(\frac{1}{2} \rho u^{2} + \rho e + p_{m} \right) \right] = -P_{0}C_{0}S_{re},$$

with an ideal-gas EOS, $p_m = (\gamma - 1) \rho e$ & $e = \frac{T}{\gamma(\gamma - 1)}$ & $\gamma = \frac{5}{3}$, and the radiation-transport equation, correct through $\mathcal{O}(\beta)$ with $\mathcal{O}(\beta^2)$ equilibrium-source corrections, is

$$\mu \partial_{x} I = -\sigma_{t} I + \frac{\sigma_{s}}{4\pi} E_{r} + \frac{\sigma_{a}}{4\pi} T^{4} - 2 \frac{\sigma_{s}}{4\pi} \beta F_{r} + \beta \mu \left(\sigma_{t} I + \frac{3\sigma_{s}}{4\pi} E_{r} + \frac{3\sigma_{a}}{4\pi} T^{4} \right)$$
$$+ \frac{1}{4\pi} \beta^{2} \left((\sigma_{s} - \sigma_{a}) \left(E_{r} + P_{r} \right) + \sigma_{a} \left(T^{4} - E_{r} \right) \right) \equiv Q(\mu) .$$

The Radiation Moment Equations

ć

• The radiation energy and momentum source equations are obtained by taking the zero'th and first angle-integrated angular moments of the grey transport equation:

$$S_{re} = \int_{4\pi} Q(\mu) \, d\mu = \frac{\partial F_r}{\partial x} \,,$$
$$S_{rp} = \int_{4\pi} \mu Q(\mu) \, d\mu = \frac{\partial P_r}{\partial x} \,,$$
$$\vdots$$
$$\vdots$$
$$\frac{\partial P_r}{\partial x} = \frac{\partial (fE_r)}{\partial x} \approx f \frac{\partial E_r}{\partial x} \sim \frac{\Delta E_r}{\Delta x_{BIGGEB}}$$

- These moment equations are closed by saying $P_r = f E_r$, where $f(x) \in (0, 1]$ is called the variable Eddington factor (VEF).
- We solve the transport equation to determine a new *f*.
- This suggests a straightforward global iterative solution procedure.

Global Solution Algorithm

- Overall solution process is iterative in 2 steps:
 - 1. RAD-HYDRO SOLVE
 - Begin with solution algorithm of Lowrie and Edwards (2008). (described on the next two slides)
 - Assume f = 1/3, or use updated VEF from step 2. below.
 - Solve "reduced" RH equations (Euler plus rad energy and momentum equations using the EF/VEF). This gives profiles for *T*, *ρ*, *p*, ..., and *E_r*, *F_r*, and *P_r*.
 - 2. Sn SOLVE
 - Use variables from rad-hydro solve to construct right-hand side of the transport equation: $\mu \partial_x I + \sigma_t (1 \beta \mu) I = q$.
 - Perform sweep (invert left-hand side S_n operator using ODE solver with error control).

This gives profiles for E_r , F_r , P_r and $f = P_r/E_r$.

• Repeat 1. and 2. until the two versions of E_r , F_r , and P_r agree.

Reduced-System Solution Algorithm

- Reduce the system of equations to two ODEs.
- Define upstream conditions at $x = -\infty$.
- Derive downstream final conditions at $x = +\infty$ using continuity of flux (Rankine-Hugoniot conditions).
- Linearize away from upstream and downstream equilibrium states.
- Integrate away from upstream state toward downstream state, and separately, integrate away from downstream state toward upstream state.
- Connect these two solutions to obtain the shock profile by enforcing continuity of the lab-frame radiation flux.

Shock profile solution procedure

Reduced-System Solution Algorithm

Shock profile solution procedure

Bremstrahlung absorption

Equation 5.24, Zel'dovich & Raizer:

$$\sigma_{Br} \approx 45 rac{
ho^2}{T^{7/2}} \left[cm^{-1}
ight], \quad
ho = \left[rac{g}{cc}
ight], \quad T = \left[eV
ight],$$

Frequency-dependent derivation given in Landau & Lifshitz, vol 2.

For all Mach numbers $\rho_f \sim 1 - 7$ and $T_f \sim M^n$, so σ_{Br} dominated by T.

 $\mathcal{M}_0 = 2$ Comparison to nonequilibrium diffusion

$\mathcal{M}_0 = 3$ The VEF is steepening

Ferguson, Morel, Lowrie (LANL, TAMU)

Radiative Shocks

September 9, 2015 15 / 32

$\mathcal{M}_0 = 3$ Comparison to nonequilibrium diffusion

Ferguson, Morel, Lowrie (LANL, TAMU)

Radiative Shocks

$\mathcal{M}_0 = 3$ Adaptation zone

Ferguson, Morel, Lowrie (LANL, TAMU)

Radiative Shocks

September 9, 2015 17 / 32

$\mathcal{M}_0 = 3$ Anti-diffusion: $F_r \approx -\nabla E_r = -\nabla Tr^4$

Ferguson, Morel, Lowrie (LANL, TAMU)

Radiative Shocks

September 9, 2015 18 / 32

$\mathcal{M}_0 = 3$ Anti-diffusion: $F_r \approx -\nabla E_r = -\nabla Tr^4$

Ferguson, Morel, Lowrie (LANL, TAMU)

Radiative Shocks

September 9, 2015 19 / 32

$\mathcal{M}_0 = 5$ The VEF is very steep

$\mathcal{M}_0 = 5$ Adaptation zone

 $\mathcal{M}_0 = 5$ Comparison to nonequilibrium diffusion

Diffusion may be good enough, if \mathcal{M}_0 is large enough

Ferguson, Morel, Lowrie (LANL, TAMU)

Radiative Shocks

Equilibrium & diffusion imply isotropy. How isotropic?

Ferguson, Morel, Lowrie (LANL, TAMU)

Radiative Shocks

September 9, 2015 24 / 32

A quantitative measure of isotropy

All S_n rays should live on the analytic polar plot

$$I_{\mu}(x) = I_{eq} e_{eq}^{+} e^{-} + e^{-} \int_{x_{eq}}^{x} \frac{q'_{\mu}(E'_{r}, F'_{r}, P'_{r})}{\mu} e^{+\prime} dx', \quad e^{\pm} \equiv e^{\pm \frac{\sigma_{t}}{\mu}(1-\beta\mu)x}$$

-

3 > 4 3

A quantitative measure of isotropy

At x = 0, the angular distribution peaks about $\mu = 0$

At $x = 0^+$, the angular distribution avoids $\mu = 0$

Any S_n choice should match this result

Conclusions

- Presented grey, temperature- and density-dependent opacities, for semi-analytic S_n-transport radiative-shock solutions. These solutions are a useful code-verification tool of RH codes that solve the radiation transport equation.
- Diffusion (incorrectly) pushes the shockfront further into the gas.
- Adaptation zone exists on the precursor side, adjacent to the hydrodynamic shock.
- Anti-diffusion exists for shocks with Bremstrahlung emission.
- VEF becomes spike at shockfront as \mathcal{M}_0 increases.
- Angular distributions are peaked about μ = 0 at the hydrodynamic shock (x = 0), and appear to avoid μ = 0 away from the hydrodynamic shock.
- Transmissive & diffusive regions exist.

Future Work

- Incorporate fully-relativistic radiation transport as well as fully-relativistic material motion.
- Incorporate frequency-dependent diffusion and frequency-dependent transport.
- Zel'dovich & Raizer claim Bremstrahlung radiation is dominated by decelerating high-velocity electrons, from the tail of the Maxwell distribution, generating high-frequency radiation.
- Incorporate separate electron and ion temperatures.
- Investigate validity of various material-motion models for radiation.

$\mathcal{M}_0=1.2$ Comparison with Fully Relativistic IMC

$\mathcal{M}_0=2$ Comparison with Fully Relativistic IMC

$\mathcal{M}_0=3$ Comparison with Fully Relativistic IMC

$\mathcal{M}_0 = 5$ Comparison with Fully Relativistic IMC

$\mathcal{M}_0 = 1.2$ Comparison with Fully Rel. Astro-code

Figure 11. Structure of a radiation-modified shock for Mac number $\mathcal{M} = 1.2$. The dashed red lines are the semi-analytic solution by solving the time-independent radiation hydrodynam equations while the black dots are the numerical results when th flow reaches steady state.

$\mathcal{M}_0 = 2$ Comparison with Fully Rel. Astro-code

Figure 12. The same as Figure 11 but for Mach number $\mathcal{M} = 3$

$\mathcal{M}_0=3$ Comparison with Fully Rel. Astro-code

Figure 13. The same as Figure 11 but for Mach number $\mathcal{M}_{\overline{c}}$