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Introduction

A generic shock solution
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Introduction
Assumptions

@ The local material is sufficiently hot for radiation to affect the
hydrodynamics > 108[K] ~ 100[eV].

@ Single material temperature.
@ S, radiation model.

@ Grey, temperature- and density-dependent opacities and an
ideal-gas ~-law EOS.

@ An infinitely long shock-tube (thick-thick shocks).

@ Material is non-relativistic.
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Introduction

What is a semi-analytic shock solution

@ Relevant PDEs reduced to system of ODEs and integrated using
a standard integrator with error control.

@ Provides radiation hydrodynamic benchmark solutions assuming
certain physics models.

@ Improve our theoretical understanding:
e Equilibrium Diffusion - Radiative shocks can be continuous for small
and large values of the Mach number, M.

@ Nonequilibrium Diffusion - A Zel'dovich spike may exist
independently of the embedded hydrodynamic shock.

o Radiative transfer - Anti-diffusive shocks exist for certain ranges of
Mo, which diffusion theory (i.e., F, ~ —VE,) fails to model.

e Bremstrahlung emission - Transmissive radiation-pressure wave,
analogous to the Marshak solution, at moderate M.
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Introduction

Previous approximate and semi-analytic solutions

@ Sen and Guess (1957) - recommended S, via Chandrasekhar
@ Heaslet and Brown (1963) - Mg and Py, weak to strong

@ Ensman & Burrows (1994) - collected RT/RH test problems
because solutions already forgotten

@ Drake (2007) - ‘adaptation zone’, ‘transmissive’ (f > 1/3) and
‘diffusive’ (f ~ 1/3) precursor regions

@ Lowrie and Rauenzahn (2007) - semi-analytic equil. (1-T) diff.
@ Lowrie and Edwards (2008) - semi-analytic nonequil. (2-T) diff.

@ McClarren and Drake (2010) - analytic anti-diff. (F, » —VE;)
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The Radiation-Hydrodynamics Equations

RH equations and the EOS

The 1-D nondim. steady-state radiation-coupled Euler equations are
8X (PU) = 07

Ox (PU2 +Pm) = —PoSpp,
1
Ox [U <2PU2 +Pe+pm>} = —PoCoSre,

with an ideal-gas EOS, pn=(y—1)pe & e= ’Y(TT—U & v=3,
and the radiation-transport equation, correct through O (3) with O (52)
equilibrium-source corrections, is

g
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The Radiation-Hydrodynamics Equations

The Radiation Moment Equations

@ The radiation energy and momentum source equations are
obtained by taking the zero’th and first angle-integrated angular
moments of the grey transport equation:

_ _6Fr
Sre = 4WQ(H)O’M— Ox

_ _ 0P
Srp—ATr,UJQ(N)dM— Ox

oP, O (fEr) . faE, N AE,
ox ox Ox  AXpiGGeR
@ These moment equations are closed by saying P, = f E;, where
f(x) € (0,1] is called the variable Eddington factor (VEF).
@ We solve the transport equation to determine a new f.
@ This suggests a straightforward global iterative solution procedure.
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Global Solution Algorithm
Global Solution Algorithm

@ Overall solution process is iterative in 2 steps:

1. RAD-HYDRO SOLVE

e Begin with solution algorithm of Lowrie and Edwards (2008).
(described on the next two slides)

e Assume f = 1/3, or use updated VEF from step 2. below.

@ Solve “reduced” RH equations (Euler plus rad energy and
momentum equations using the EF/VEF).
This gives profiles for T, p, p, ..., and E,, F,, and P,.

2. Sn SOLVE

e Use variables from rad-hydro solve to construct right-hand side of
the transport equation: udy/ + ot (1 — Bu) I = q.

o Perform sweep (invert left-hand side S, operator using ODE solver
with error control).
This gives profiles for E;, Fr, P-and f = P./E,.

@ Repeat 1. and 2. until the two versions of E,, F;, and P, agree.
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Reduced-System Solution Algorithm

Reduced-System Solution Algorithm

@ Reduce the system of equations to two ODEs.
@ Define upstream conditions at x = —oo.

@ Derive downstream final conditions at x = +oc using continuity of
flux (Rankine-Hugoniot conditions).

@ Linearize away from upstream and downstream equilibrium states.
@ Integrate away from upstream state toward downstream state, and
separately, integrate away from downstream state toward

upstream state.

@ Connect these two solutions to obtain the shock profile by
enforcing continuity of the lab-frame radiation flux.
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Reduced-System Solution Algorithm

Shock profile solution procedure
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Reduced-System Solution Algorithm
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Computational Results
Bremstrahlung absorption

Equation 5.24, Zel'dovich & Raizer:

05,%457?72/2 [Cm_q , p= [%} , T =leV].

Frequency-dependent derivation given in Landau & Lifshitz, vol 2.

For all Mach numbers psf ~ 1 —7 and T; ~ M", so og, dominated by T.
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Computational Results

Mo = 2 Comparison to nonequilibrium diffusion
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Mo = 3 The VEF is steepening
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Computational Results

Mo = 3 Comparison to nonequilibrium diffusion
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Computational Results
M = 3 Adaptation zone
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Computational Results

M, = 3 Anti-diffusion: F, » —VE, = -V Tr*
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Computational Results

M, = 3 Anti-diffusion: F, » —VE, = -V Tr*
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Mo =5 The VEF is very steep
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Computational Results
My = 5 Adaptation zone
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Computational Results

Mo = 5 Comparison to nonequilibrium diffusion
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Computational Results

Diffusion may be good enough, if My is large enough
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Computational Results

Equilibrium & diffusion imply isotropy. How isotropic?
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Computational Results

A quantitative measure of isotropy
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Computational Results
All S, rays should live on the analytic polar plot

X E/,F,, P g
L, (x) = que;fqe— + e‘/ Me*’dx’, ot = gt (1-Bu)x
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Computational Results

A quantitative measure of isotropy
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Computational Results

At x = 0, the angular distribution peaks about ;=0
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Computational Results

At x = 07, the angular distribution avoids ;= 0
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Computational Results

Any S, choice should match this result
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Conclusions & Future Work
Conclusions

@ Presented grey, temperature- and density-dependent opacities, for
semi-analytic S,-transport radiative-shock solutions. These
solutions are a useful code-verification tool of RH codes that solve
the radiation transport equation.

@ Diffusion (incorrectly) pushes the shockfront further into the gas.

@ Adaptation zone exists on the precursor side, adjacent to the
hydrodynamic shock.

@ Anti-diffusion exists for shocks with Bremstrahlung emission.
@ VEF becomes spike at shockfront as M increases.

@ Angular distributions are peaked about 1 = 0 at the hydrodynamic
shock (x = 0), and appear to avoid . = 0 away from the
hydrodynamic shock.

@ Transmissive & diffusive regions exist.
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Conclusions & Future Work
Future Work

@ Incorporate fully-relativistic radiation transport as well as
fully-relativistic material motion.

@ Incorporate frequency-dependent diffusion and
frequency-dependent transport.

@ Zel'dovich & Raizer claim Bremstrahlung radiation is dominated by
decelerating high-velocity electrons, from the tail of the Maxwell
distribution, generating high-frequency radiation.

@ Incorporate separate elecron and ion temperatures.

@ Investigate validity of various material-motion models for radiation.
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Mo = 1.2 Comparison with Fully Relativistic IMC
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M = 2 Comparison with Fully Relativistic IMC
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M = 3 Comparison with Fully Relativistic IMC
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Mo = 5 Comparison with Fully Relativistic IMC
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Mo = 1.2 Comparison with Fully Rel. Astro-code
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Figure 11. Structure of a radiation-modified shock for Mac
number A1 = 1.2. The dashed red lines are the semi-analytic

solution by solving the time-independent radiation hydrodynam
equations while the black dots are the numerical results when tl
flow reaches steady state.
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M = 2 Comparison with Fully Rel. Astro-code
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M = 3 Comparison with Fully Rel. Astro-code
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Figure 13. The same as Figure 11 but for Mach number A1 =
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