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Physical Model

Physical Model - Monomaterial description

4 / av | + W -7V dS=0
dt \ Jv A(t)
d
- / p dV +/ oI -7 dS=0,
dt V(t) A(t)
4 / p¥ dV +/ p?ﬁ.7d3+/ p”/ dS=0,
dt \ Jv A(#) A(t)

d —
a(/V(t);)Eci\/)+/A(t)p(t)1ﬁ17~7dso,

with H = B + 2 (enthalpy), e = E — 172 (internal energy), 7 = 7 — @
p

2

(Relative velocity) and :

p=f(p,e) (EOS)




Notations

Notations

Specific indices {j,r, k} will denote
cells, nodes and faces.

N : nodes of the mesh
e (C : cells of the mesh
e &£ : edges of the mesh

E(J) : set of edges bounding
the cell ’j’.

N(j) : set of nodes defining
the cell j’.

C(r) : set of cells sharing the
node 'r’.

e Ay :in 2D, length of the edge 'k’

° Iﬂ : outward-pointing normal at
the edge 'k’




Numerical Scheme

2D Numerical Scheme - Monomaterial description

We consider a robust Lagrangian scheme (here GLACE or EUCCLHYD
with a face-based formulation of the numerical fluxes) in which we add
upwinded advection fluxes :
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Remark : the Lagrangian scheme must ensure the compatibility between
the motion of the nodes and the GCL.

Multimate:



Numerical Scheme

Lagrangian fluxes
Face - Node relations :

Ajrizy ) = % (Ar ik + Apr v32) | Y Ajriig =0 (1)
iec(r)

W= @), 2)

Pik = % (Pir +pjr+) (3)

Pkl = % (jr U7 + Dyt 010) (4)

Nodal pressures are computed from the nodal velocities :
iV = Pivis — ar (U — 15

where the acoustic tensor a; € R? x R? is a symmetric positive-definite
matrix depending on the chosen Lagrangian scheme :

GLACE EUCCLHYD
T = 5 ¢ Ajor Vi @ Vir | 0G0 = G2 (Ajn Vik @ Vjk + Aj ot Vjad @ Vjpt)




Nodal Solver

Solving the system :

> Ajepiig =0 (5)

jec(r)

for all internal nodes gives the nodal velocities :

Z Ajroir v = Z A],Tp]VJ,T+ Z Aj, TO‘TU—; (6)

Jjec(r) Jjec(r) Jjec(r)

The boundary conditions are taken into account in the previous system by
making some minor modifications in the previous system — just refer to
the method used to solve the system above for each specific boundary
condition (Neumann, imposed pressure, plane wall. . .)




Numerical Scheme

Upwind method for the advective fluxes

The upwinded quantities are chosen regarding the sign of the face relative
velocity jif, - ;4. We write for x = {p, ¥, E} :

X = 2 (%5 + )+ siem (2t 752) (%5 — %)

with sign(z) € {—1, 0, 1} is the sign of the real number z.

1st order 2nd order
%= %=xi+L (Y0,) @)
[F )] = agmin 5> [u-(u+¥00-@-2)]

T (Feoer? tech)
L; : Venkatakrishnan limiter




Numerical Scheme

2nd law of thermodynamics

Proposition

In any cell ’j’, a semi-discrete formulation of the entropy balance is :

d V . U’ U,
T‘M + T Z Akpkpskpljlz : lﬂ =

J
dt ke&(j)
1 m
—521%(1?—0_;) mhvik— Y Ax(pik —py) (0L — 1)) - vk
ke&()) ke&(j)

where T} is the temperature in the cell ’j’. Providing that ¥r € N'(j), o, is
a symmetric positive-definite matriz, then our scheme produces entropy in
the sense that :

‘ d(p,Vjs; o
viecw, n0YS) L SN gpmarm 0 (8)
kEE(H)

dt




Stability - CFL condition

Our scheme is a first-order method in time and explicit in time. The
quantities involved in the numerical fluxes are expressed at time t" and the

time derivatives are discretized as follows :
n+1 n
d X - Xj
—(y) =2 A 9
S ) = ©®

We take the following CFL condition :

g (sl el I £ 6) s copL, )
jec Az

with ¥ = (vs,vy)", W = (we, wy)’, CFL € [0;1] and ¢; the sound speed in
the cell ’j’, and the length Az; is arbitrarily computed as the ratio of the
volume over the smallest face area among the surrounding faces bounding
the cell ’j’

Vj
min A
ke&(j)

Al’j = (11)




Computation method for the grid velocities

Computational method for the grid velocities

We use the L.E.L. method (Large Eddy Limitation) developed by Costes and
Ghidaglia (talk on wednesday). The Hodge decomposition of the velocity field
T : Q — R2? reads :

7 ’l)z 7Uy ?g—i—?lf, (12)
where Bf of
1,
v f:( 5 Bx) (13)

with f is computed from the Laplacian problem :

“Af =-VA(D),nQ (14)
f =0, on 092,
and ?g deduced from (12) ?g =7 - ?lf
Remark : in 2D, ¥ A () is defined as :
_ vy Ove
VA@) = o~ (15)

Multimate:



Computation method for the grid velocities

(2D) Computational method for the grid velocities

In pratice, the grid velocity is computed as follow : :
w(@) = 0,(2)V g(z) + 05 (2) V£ (@), (16)

where the limiters are taken as :
Og(z) = (\?g )
05(2) = vy (IV4 ()
and the function ¢ is chosen as :

»(r) = min(1,

2=

with x = {xg, x»} the limitation thresholds.




Computation method for the grid velocities

Limitation

The limitation thresholds values x4 and x s uniformly limit the grid velocity

within €.
Xg Xf 0g 0y w0 simulation
= = 1 = = Lagrangian method
0 0 0 0 W =0 Eulerian method
any | 0 » (\?g\) 0 W=6gVg limited compression / removed rotation
0 any | 0 @ (\?lf\) W =0 (?lf) limited rotation / removed compression

In the following results, we will always precise the values for x4 and xy.




Results - Monomaterial description - Sod shock tube

Initial conditions

y=01 p=1 p=01
tho=1 tho =0.125
§=0 v=(0,0) v=(0,0)
x=0 x=05 x=1

» Mesh : 150 x 15 cells
» Lagrangian scheme : GLACE

» boundary conditions : plane Wall everywhere
» EOS : Ideal Gas law with v =1.4

» CFL=10.5

> limiters for W : Xg = 0.5, xy = 1.0




Sod shock tube - ¢, = 0.2
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Results - Monomaterial description - Sedov Blast wave

Initial Conditions

p=le-6
rho=1
v = (0,0)

p = (gamma-1)*rho+0.244816/vol
“rho=1

. v=10,0)
y=0

Mesh : 30 x 30 cells
Lagrangian scheme : EUCCLHYD

boundary conditions : plane Wall
everywhere

EOS : Ideal Gas law with v =1.4
limiters for W : Xg = 0.7, xy = 1.0
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Sedov blast wave - tgpa = 1

Density
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Results - Monomaterial description - Saltzman test case

Initial Conditions

y =0.001 e T
T LT
Y T
T T
L T
T T
HEERTRD e
N EEERERY VT

y=0 O LATAL
x=0 p=1e-6 x =0.01
rho =1
v = (0,0)

> Mesh : 100 x 10 cells
» Lagrangian scheme : EUCCLHYD

» boundary conditions : plane wall on the top, bottom and right
boundaries. Normal velocity imposed on the left boundary :
7 - (1,007 = 0.01.

» EOS : Ideal Gas law with v =5/3
» limiters for W : xg =1, xr =05




1l

Saltzman test case - tgpa = 0.7
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Results - Monomaterial description - Triple point

Initial Conditions

%

pr =1
P=101

Mesh : 70 x 30 cells
» Lagrangian scheme : GLACE

v

v

boundary conditions : plane wall everywhere
EOS : Ideal Gas law with v =1.4
limiters for W@ : x4 = 0.1, x5 = 0.015

v

\{
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Five-equation Model

Physical Model - Two-material description

Description with a single velocity and a single total energy :

d
5</vm dV>+ A(t)ﬁ(t).7dszo

( +dv>+/ ptWH®) -V dS =0,

V(t) A(t)

) +[ R 7 as =0,
A(t)

i(/ p?dv>+/ oWV (@) -V dS + p?7 dS =0,
V(t) A(t) A(t)

dt
d
dt </V(t) PE dV> * /A(t) POH() W7 ds=0.

We also consider the following relations :

&la

&l
/\

> species conservation : aT +a~ =1

> mass conservation : atpT +a " p~ =p
pE

» Total energy conservation : aTptET +a p~E~ =




Interface model

Interface model

The interface I' = QT N Q™ is described using a level-set representation :
I={7eQ ¢@)=0}
with ¢ the signed Euclidian distance defined as :
¢:R—>R

d(T,r) if Zeqt
T = p(T) =4 —d(Z,T) if T e
0 if el

The motion of the interface I' is given by the finite volume level-set equation :

d
— dVv vdS=0
&<A@” >+Amm7u

The local normal to the interface is connected to the gradient of ¢ :

= —W(«i. It is used to compute the surfaces of exchange A;r and A,
¢

(PLIC procedure) involved in the conservation equations.

Multimate:



Interface model

Reinitialization step

The "distance" property of the function ¢ does not hold as time evolves.
After solving the conservation equations, a reinitializing step is performed
by solving the IVP on the updated mesh M™** :

/V(t) <% (¢)—<ﬁ.(7})) dv+/A(t)¢7.7 dS:/V(t) sign(go) AV
(17)

do = (2, t")

with d = sign(¢o) ||?(qb) | .




Numerical Scheme

Numerical Scheme - Two-material description

d
7 (Vi) + > Apwi -5} =0,GCL

kEE®)
d
S (o) + 3 ALt 7t =0, 4
ke&(5)
d/ _ —
dt (aj Pj VJ) + > Agpy " Ik vy ) = 0, mass -
keE(J)
d
D)+ S A (o 777 4 pyaE) = 0, momentum
kEE(H)
d
I (p; Vi Ej) Z Ay (,o“pE“p BE 4 ik v_;g) m =0, total energy
ke&(5)

Conservation of species, mass and total energy is expressed using the consistent
relations :
1= a + aj ,
AkP — A+ +7UP+A*p—7UP
A+ + up E+,up + A P —,up E—Np

AkpupEup
A = At 4+ A5




Numerical Scheme

Computation of the volume fraction oz;‘“ from d)”“

1. Solve the Semi-discrete formulation of the level set equation :

d w
I (PiVidi) + > AwpiP ot k- vk =0
ke&(j)
and deduce qb;-”'l from the equation of mass.

2. Then, reinitialize qb;-”'l by seeking the stationary solution of the
equation

U u % .
Z Ak (p" 0" — ¢5) die - m = Slgn(ﬁbo)vj
kEE(H)

3. interpolate the nodal values of ¢ from the centered values using the
arithmetic mean :

n+1 n+1
VreN, o) _Card Z o

JGC(T)




Numerical Scheme

Computation of the volume fraction oz;-‘“ from d)}‘“

J.-M. Ghidaj




Numerical Scheme
Computation of the volume fraction a}‘“ from d)}‘“

negative product

\ positive

7
negative ) product

product £

positive
product

4. in a mixed cell, search the points which cancels ¢ on the surrounding
edges for which ¢, ¢ry1 <O0.

Z=0-8)T+ BT,
Or
¢r+1_¢r

with 8 = —




Numerical Scheme

Computation of the volume fraction a}‘“ from d)}‘“

4. in a mixed cell, search the points which cancels ¢ on the surrounding
edges for which ¢, ¢ry1 <O0.

Z=01-8)Tr+ BT

Gr

with 8 = —7¢T+1 — o




Numerical Scheme

Computation of the volume fraction oz;-‘“ from d)}‘“

4. in a mixed cell, search the points which cancels ¢ on the surrounding
edges for which ¢, ¢ry1 <O0.

Z=0-8)T+ BT,
Or
¢r+1_¢r

5. compute V]-i, oz]-i and finally Alf from the set of nodes.

with 8= —




Numerical results

Results - Two-material Triple point
Initial Conditions

p=01
rho = 0.125
v =1(0,0)
1 gamma = 1.4
v =(0,0) y=15
gamma = 1.5| p=01

v =(0,0)
gamma = 1.5

Mesh : 280 x 120 cells
» Lagrangian scheme : GLACE

v

» boundary conditions : plane wall everywhere
EOS : Ideal Gas law
limiters for W : x4 = 0, x; = 0. (Eulerian Framework)

v

v




Num

Two-material Triple point. tgpa = 5

click here to start

F1GUureE : Density map for the multimaterial triple point test case in the Eulerian
framework. The white line denotes the interface.




Numerical results

Results - Multimaterial description - Rayleigh-Taylor instability

Initial Conditions

y=1 r————
g3 » Mesh : 32 x 160 cells
e » Lagrangian scheme : GLACE
5 ‘ » boundary conditions : plane wall everywhere
™ l o—0.0ny " EOS:Ideal Gas law with v = 1.4.
5 ey | » limiters for W : Xg =0, x; = 0. (Eulerian
v=1(00) Framework)
y=0

x=0 x = 0.166




Numerical results

Two-material Rayleigh-Taylor instability. tgna = 10

click here to start

F1GURrE : Density map for the multimaterial Rayleigh-Taylor test case in the
Eulerian framework. The white line denotes the interface.




Conclusions and perspectives

v

v

Our numerical scheme seems to be robust and accurate.
A lot of work to do for the multimaterial description.

The global computational method for the grid velocity is inefficient for
complex flows that are composed of both vortices and shocks. A local
method should be used instead.

The extension to the case nbmat > 3 is in progress. The main idea is to
use nbmat — 1 level set equations for each interface, the main problem

being the reinitializing step that may be much more complicated (and

time consuming).
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