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ABSTRACT

The Arbitrary Lagrangian-Eulerian (ALE) framework forms the basis of many large-scale multi-physics
codes, and in particular those centered around radiation diffusion and shock hydrodynamics. Current
ALE discretization approaches consist of a Lagrange phase, where the hydrodynamics equations are
solved on a moving mesh, followed by a three-part “advection phase” involving mesh optimization,
field remap and multi-material zone treatment. While traditional low-order ALE methods have been
successful at extending the capability of pure Lagrangian methods, they also introduce numerical prob-
lems of their own including breaking of symmetry, and lack of energy conservation.

In this talk, we present a general high-order finite element discretization framework that aims to im-
prove the quality of current ALE simulations of radiation-hydrodynamics, while also improving their
performance on modern data-centric computing architectures. We use the de Rham complex to guide
the discretization of different physics components. In particular, kinematic quantities (e.g. velocity, po-
sition) are discretized with continuous (H1) finite elements, thermodynamic quantities (e.g. internal
energy) use continuous (L2) elements, while H(div)-conforming finite elements are used for the fluxes
in radiation diffusion.

Our Lagrangian hydrodynamics algorithm is based on Galerkin variational formulation of momentum
and energy conservation using the high-order de Rham finite elements. The use of high-order position
description enables curvilinear zone geometries allowing for better approximation of the mesh curva-
ture, which develops naturally with the flow. The remap phase of ALE is posed as an advection problem
in artificial pseudo-time, describing the evolution of the post-Lagrangian mesh into the improved new
mesh. This is discretized using a finite element Discontinuous Galerkin (DG) approach on high-order
curvilinear meshes. The semi-discrete DG method results in high-order accuracy for sufficiently smooth
fields, but can produce non-monotonic results for discontinuous fields. We consider several non-linear
approaches to enforce monotonicity, including high-order algebraic Locally Scaled Diffusion (LSD),
Flux Corrected Transport (FCT) and Optimization Based Remap (OBR). The ALE evolution of differ-
ent materials in our framework uses high-order “material indicator” functions, and we have developed
high-order closure models to model the sub-zonal material behavior during the Lagrangian phase.

We have started exploring approaches for discretizing high-order multi-group radiation diffusion on
general curvilinear grids and will report some initial results on the coupling with the high-order hy-
drodynamics. We will also present numerical tests illustrating the robustness and scalability of our
discretization algorithms and discuss recent work to further improving their performance on modern
architectures.
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